Approved by the AUA Board of Directors October 2018

Authors' disclosure of potential conflicts of interest and author/staff contributions appear at the end of the article.

© 2019 by the American Urological Association

American Urological Association (AUA)/

Society of Urodynamics, Female Pelvic Medicine & Urogenital Reconstruction (SUFU)

INCONTINENCE AFTER PROSTATE TREATMENT: AUA/SUFU GUIDELINE

Jaspreet S. Sandhu, MD; Benjamin Breyer, MD; Craig Comiter, MD; James A. Eastham, MD; Christopher Gomez, MD; Daniel J. Kirages, PT; Chris Kittle; Alvaro Lucioni, MD; Victor W. Nitti, MD; John T. Stoffel, MD; O. Lenaine Westney, MD; M. Hassan Murad, MD; Kurt Mc Cammon, MD

Purpose

Urinary incontinence after prostate treatment (IPT) is a clinically significant condition that causes a high degree of patient distress. It is one of the few urologic diseases that is iatrogenic, and, therefore, predictable and perhaps preventable. Although most clinicians are familiar with the more commonly known term "post-prostatectomy incontinence," this guideline uses the term IPT, which is more inclusive given that it covers the management of patients who have incontinence after undergoing radical prostatectomy (RP), radiation treatment (RT), and treatment of benign prostatic hyperplasia (BPH). Evaluation of the patient; risk factors for IPT, which should be discussed with all patients prior to treatment; assessment of the patient prior to intervention; and a stepwise approach to management are covered in this guideline. Possible maneuvers to decrease rates of IPT, with specific focus placed on patients with stress urinary incontinence (SUI) are also explored. The multiple treatments that exist for patients with IPT are discussed and evaluated, including physical therapy, medications, and surgery.

Methodologies

The systematic review utilized to inform this guideline was conducted by a methodology team at the Mayo Clinic Evidence-Based Practice Research Program. The scope of the topic and the discussion of the final systematic review used to develop guideline statements was conducted in conjunction with the Incontinence after Prostate Treatment expert panel. A research librarian conducted searches in Ovid MEDLINE (from 2000 to December 21st, 2017), Cochrane Central Register of Controlled Trials (from 2000 to December 21st, 2017) and Cochrane Databases of Systematic Reviews (from 2000 to December 21st, 2017). Searches of electronic databases were supplemented by reviewing reference lists of relevant articles. Panel members identified additional references through 12/31/2018.

Guideline Statements

Pre-Treatment

 Clinicians should inform patients undergoing radical prostatectomy of all known factors that could affect continence. (Moderate Recommendation; Evidence Level: Grade B)

Incontinence after Prostate Treatment

- 2. Clinicians should counsel patients regarding the risk of sexual arousal incontinence and climacturia following radical prostatectomy. (Strong Recommendation; Evidence Level: Grade B)
- 3. Clinicians should inform patients undergoing radical prostatectomy that incontinence is expected in the short-term and generally improves to near baseline by 12 months after surgery but may persist and require treatment. (Strong Recommendation; Evidence Level: Grade A)
- 4. Prior to radical prostatectomy, patients may be offered pelvic floor muscle exercises or pelvic floor muscle training. (Conditional Recommendation; Evidence Level: Grade C)
- 5. Patients undergoing transurethral resection of the prostate after radiation therapy or radical prostatectomy after radiation therapy should be informed of the high rate of urinary incontinence following these procedures. (Moderate Recommendation; Evidence Level: Grade C)

Post-Prostate Treatment

- 6. In patients who have undergone radical prostatectomy, clinicians should offer pelvic floor muscle exercises or pelvic floor muscle training in the immediate post-operative period.

 (Moderate Recommendation; Evidence Level: Grade B)
- 7. In patients with bothersome stress urinary incontinence after prostate treatment, surgery may be considered as early as six months if incontinence is not improving despite conservative therapy. (Conditional Recommendation; Evidence Level: Grade C)
- 8. In patients with bothersome stress urinary incontinence after prostate treatment, despite conservative therapy, surgical treatment should be offered at one year post-prostate treatment. (Strong Recommendation; Evidence Level: Grade B)

Evaluation of Incontinence after Prostate Treatment

- Clinicians should evaluate patients with incontinence after prostate treatment with history, physical exam, and appropriate diagnostic modalities to categorize type and severity of incontinence and degree of bother. (Clinical Principle)
- 10. Patients with urgency urinary incontinence or urgency predominant mixed urinary incontinence should be offered treatment options per the American Urological Association Overactive Bladder guideline. (Clinical Principle)
- 11. Prior to surgical intervention for stress urinary incontinence, stress urinary incontinence should be confirmed by history, physical exam, or ancillary testing. (Clinical Principle)
- 12. Patients with incontinence after prostate treatment should be informed of management options for their incontinence, including surgical and non-surgical options. (Clinical Principle)
- 13. In patients with incontinence after prostate treatment, physicians should discuss risk, benefits, and expectations of different treatments using the shared decision-making model. (Clinical Principle)
- 14. Prior to surgical intervention for stress urinary incontinence, cystourethroscopy should be per formed to assess for urethral and bladder pathology that may affect outcomes of surgery. (Expert Opinion)
- 15. Clinicians may perform urodynamic testing in a patient prior to surgical intervention for stress urinary incontinence in cases where it may facilitate diagnosis or counseling. (Conditional Recommendation; Evidence Level: Grade C)

Incontinence after Prostate Treatment

Treatment Options

- 16. In patients seeking treatment for incontinence after radical prostatectomy, pelvic floor muscle exercises or pelvic floor muscle training should be offered. (Moderate Recommendation; Evidence Level: Grade B)
- 17. Artificial urinary sphincter should be considered for patients with bothersome stress urinary incontinence after prostate treatment. (Strong Recommendation; Evidence Level: Grade B)
- 18. Prior to implantation of artificial urinary sphincter, clinicians should ensure that patients have adequate physical and cognitive abilities to operate the device. (Clinical Principle)
- 19. In the patient who selects artificial urinary sphincter, a single cuff perineal approach is preferred. (Moderate Recommendation; Evidence Level: Grade C)
- 20. Male slings should be considered as treatment options for mild to moderate stress urinary incontinence after prostate treatment. (Moderate Recommendation; Evidence Level: Grade B)
- 21. Male slings should not be routinely performed in patients with severe stress incontinence. (Moderate Recommendation; Evidence Level: Grade C)
- 22. Adjustable balloon devices may be offered to patients with mild stress urinary incontinence after prostate treatment. (Moderate Recommendation; Evidence Level: Grade B)
- 23. Surgical management of stress urinary incontinence after treatment of benign prostatic hyperplasia is the same as that for patients after radical prostatectomy. (Moderate Recommendation; Evidence Level: Grade C)
- 24. In men with stress urinary incontinence after primary, adjuvant, or salvage radiotherapy who are seeking surgical management, artificial urinary sphincter is preferred over male slings or adjustable balloons. (Moderate Recommendation; Evidence Level: Grade C)
- 25. Patients with incontinence after prostate treatment should be counseled that efficacy is low and cure is rare with urethral bulking agents. (Strong Recommendation; Evidence Level: Grade B)
- 26. Other potential treatments for incontinence after prostate treatment should be considered investigational, and patients should be counseled accordingly. (Expert Opinion)

Complications after Surgery

- 27. Patients should be counseled that artificial urinary sphincter will likely lose effectiveness over time, and reoperations are common. (Strong Recommendation; Evidence Level: Grade B)
- 28. In patients with persistent or recurrent urinary incontinence after artificial urinary sphincter or sling, clinicians should again perform history, physical examination, and/or other investigations to determine the cause of incontinence. (Clinical Principle)
- 29. In patients with persistent or recurrent stress urinary incontinence after sling, an artificial urinary sphincter is recommended. (Moderate Recommendation; Evidence Level: Grade C)
- 30. In patients with persistent or recurrent stress urinary incontinence after artificial urinary sphincter, revision should be considered. (Strong Recommendation; Evidence Level: Grade B)

Incontinence after Prostate Treatment

Special Situations

- 31. In a patient presenting with infection or erosion of an artificial urinary sphincter or sling, explantation should be performed and reimplantation should be delayed. (Clinical Principle)
- 32. A urinary diversion can be considered in patients who are unable to obtain long-term quality of life after incontinence after prostate treatment and who are appropriately motivated and counseled. (Expert Opinion)
- 33. In a patient with bothersome climacturia, treatment may be offered. (Conditional Recommendation; Evidence Level: Grade C)
- 34. Patients with stress urinary incontinence following urethral reconstructive surgery may be offered artificial urinary sphincter and should be counseled that complications rates are higher. (Conditional Recommendation; Evidence Level: Grade C)
- 35. In patients with incontinence after prostate treatment and erectile dysfunction, a concomitant or staged procedure may be offered. (Conditional Recommendation; Evidence Level: Grade C)
- 36. Patients with symptomatic vesicourethral anastomotic stenosis or bladder neck contracture should be treated prior to surgery for incontinence after prostate treatment. (Clinical Principle)

Introduction

IPT causes emotional and financial distress to patients afflicted with this condition by delaying patients' re-entry into society, inhibiting relationships, and carrying an economic burden for families and stakeholders. It is a condition that has gained visibility not only due to the extensive use of surgery for prostate cancer but also given to the proliferation of men's continence products available to the lay public.

Since IPT is caused by treatment of the prostate, it is, by definition iatrogenic and perhaps preventable or predictable. Understanding the nature of IPT is crucial for patients and practitioners during recovery and extended survivorship. Practitioners benefit from being able to assess which patient will likely experience further symptom recovery versus those who will not. This allows clinicians to set clear and reasonable expectations regarding the short-, medium-, and long-term sequela of IPT.

Although most clinicians are familiar with the more commonly known term "post-prostatectomy incontinence," this guideline uses the term IPT, which is more inclusive given that it covers the management of patients who have incontinence after undergoing RP, RT, and treatment of BPH. Evaluation of the patient; risk factors for IPT, which should be discussed with all patients prior to treatment; assessment of the patient prior to intervention; and a stepwise approach to management are covered in this guideline. Possible maneuvers to decrease rates of IPT, with specific focus placed on patients with SUI, are also explored. The multiple treatments that exist for patients with IPT are discussed and evaluated, including physical therapy, medications, and surgery. Algorithms for patient evaluation, surgical management, and device failure are provided for practitioners.

Methodology

The systematic review utilized to inform this guideline was conducted by a methodology team at Mayo Clinic Evidence-Based Practice Research Program. Determination of the guideline scope and review of the final systematic review to inform guideline statements was conducted in conjunction with the Incontinence after Prostate Treatment expert panel.

Panel Formation

The IPT Panel was created in 2017 by the American Urological Association Education and Research, Inc. (AUAER). This guideline was developed in collaboration with the Society of Urodynamics, Female Pelvic

Incontinence after Prostate Treatment

Medicine & Urogenital Reconstruction (SUFU). The Practice Guidelines Committee (PGC) of the American Urological Association (AUA) selected the Panel Chair, who in turn appointed additional panel members with specific expertise in this area, in conjunction with SUFU. Funding of the panel was provided by the AUA with contributions from SUFU; panel members received no remuneration for their work.

Searches and Article Selection

A comprehensive search of several databases from 2000 to December 21st, 2017 was completed. Databases included Ovid MEDLINE Epub Ahead of Print, Ovid Medline In-Process & Other Non-Indexed Citations, Ovid MEDLINE, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews, and Scopus. The search strategy was designed and conducted by an experienced medical reference librarian with input from the guideline methodologist. Controlled vocabulary supplemented with keywords was used to search for studies on IPT. The search was restricted to studies published in English and available in full text in the peer reviewed literature.

Data Abstractions

Two reviewers independently selected studies and extracted data using standardized, pilot tested forms created in a systematic review software management system (Distiller SR, Evidence Partners, Ottawa, Canada). Disagreements were resolved by discussion between the two reviewers. Two main types of data were abstracted: baseline characteristics (study design, objective, inclusion and exclusion criteria, sample size, age, body mass index [BMI], intervention, period of follow up), and outcome data (number of patients who were incontinent and those with incontinence improvement, mean pads per day, quality of life [QoL], and complications).

Risk of Bias Assessment

The Newcastle Ottawa scale, which evaluates cohort selection, comparability and outcomes assessment, was used for non-randomized

controlled trials (RCTs). The Cochrane risk of bias tool which evaluates random sequence generation, allocation concealment, blinding, and attrition was used for evaluation of RCTs.

Data Synthesis

When meta-analysis was appropriate, methodologists utilized the random-effects model a priori because of the anticipated heterogeneity across study populations and settings. Otherwise, outcomes were evaluated using narrative and descriptive approaches.

Determination of Evidence Strength

The categorization of evidence strength is conceptually distinct from the quality of individual studies. Evidence strength refers to the body of evidence available for a particular question and includes individual study quality in addition to consideration of study design; consistency of findings across studies; adequacy of sample sizes; and generalizability of samples, settings, and treatments for the purposes of the guideline. Investigators graded the strength of evidence for key comparisons and outcomes for each Key Question, using the approach described in the Agency for Healthcare Research and Quality Evidence-based Practice Center Methods Guide for Comparative Effectiveness and Effectiveness Reviews. 1 Strength of evidence assessments were based on the following domains:

- Study limitations, based on the overall risk of bias across studies (low, medium, or high)
- Consistency of results across studies
- Directness of the evidence linking the intervention and health outcomes
- Precision of the estimate of effect, based on the number and size of studies and confidence intervals for the estimates (precise or imprecise)
- Reporting bias, based on whether or not the studies defined and reported primary outcomes and whether or not we identified relevant unpublished studies (suspected or undetected)

The AUA categorizes body of evidence strength as Grade A (well-conducted and highly-generalizable

RCTs or exceptionally strong observational studies with consistent findings), Grade B (RCTs with some weaknesses of procedure or generalizability or moderately strong observational studies with consistent findings), or Grade C (RCTs with serious deficiencies of procedure generalizability or extremely small sample sizes or observational studies that are inconsistent, have small sample sizes, or have other problems that potentially confound interpretation of data). By definition, Grade A evidence is evidence about which the Panel has a high level of certainty, Grade B evidence is evidence about which the Panel has a moderate level of certainty, and Grade C evidence is evidence about which the Panel has a low level of certainty.

AUA Nomenclature: Linking Statement Type to Evidence Strength

The AUA nomenclature system explicitly links statement type to body of evidence strength, level of certainty, magnitude of benefit or risk/burdens, and the Panel's judgment regarding the balance between benefits and risks/burdens (Table 1). Recommendations Strong are directive statements that an action should (benefits outweigh risks/burdens) or should not (risks/ burdens outweigh benefits) be undertaken because net benefit or net harm is substantial. **Moderate Recommendations** are directive statements that an action should (benefits outweigh risks/burdens) or should not (risks/ burdens outweigh benefits) be undertaken because net benefit or net harm is moderate. Conditional Recommendations are directive statements used when the evidence indicates that there is no apparent net benefit or harm or when the balance between benefits and risks/burden is unclear. All three statement types may be supported by any body of evidence strength grade. Body of evidence strength Grade A in support of a Strong or Moderate Recommendation indicates that the statement can applied to most patients in most circumstances, and that future research is *unlikely* to change confidence. Body of evidence strength Grade B in support of a Strong or Moderate Recommendation indicates that the statement can

applied be to most patients in most circumstances, but better evidence could change confidence. Body of evidence strength Grade C in support of a Strong or Moderate Recommendation indicates that the statement can be applied to most patients in most circumstances, but better evidence is likely to change confidence. Body of evidence strength Grade C is only rarely used in support of a Strong Recommendation. Conditional Recommendations also can be supported by any evidence strength. When body of evidence strength is Grade A, the statement indicates that benefits and risks/burdens appear balanced, the best action depends on patient circumstances, and future research is *unlikely to change* confidence. When body of evidence strength Grade B is used, benefits and risks/burdens appear balanced, the best action also depends on individual patient circumstances, and better evidence could change confidence. When body of evidence strength Grade C is used, there is uncertainty regarding the balance between benefits and risks/burdens, alternative strategies may be equally reasonable, and better evidence is likely to change confidence.

Where gaps in the evidence existed, the Panel provides guidance in the form of *Clinical Principles* or *Expert Opinions* with consensus achieved using a modified Delphi technique if differences of opinion emerged.² A *Clinical Principle* is a statement about a component of clinical care that is widely agreed upon by urologists or other clinicians for which there may or may not be evidence in the medical literature. *Expert Opinion* refers to a statement, achieved by consensus of the Panel, that is based on members' clinical training, experience, knowledge, and judgment for which there is no evidence.

Peer Review and Document Approval

An integral part of the guideline development process at the AUA is external peer review. The AUA conducted a thorough peer review process to ensure that the document was reviewed by experts in the treatment of IPT. In addition to reviewers from the AUA PGC, Science and Quality Council (SQC), and Board of Directors (BOD), the document was reviewed by representatives from

TABLE 1: AUA Nomenclature Linking Statement Type

to Level of Certainty, Magnitude of Benefit or Risk/Burden, and Body of Evidence Strength

	Evidence Strength A	Evidence Strength B	Evidence Strength C
	(High Certainty)	(Moderate Certainty)	(Low Certainty)
Strong Recommendation	Benefits > Risks/ Burdens (or vice ver- sa)	Benefits > Risks/ Burdens (or vice versa)	Benefits > Risks/Burdens (or vice versa)
(Net benefit or harm substantial)	Net benefit (or net harm) is substantial	Net benefit (or net harm) is substantial	Net benefit (or net harm) appears substantial
	Applies to most patients in most circumstances and future research is unlikely to change confidence	Applies to most patients in most circumstances but better evidence could change confidence	Applies to most patients in most circumstances but better evidence is likely to change confidence (rarely used to support a
	3		Strong Recommendation)
Moderate Recom- mendation	Benefits > Risks/ Burdens (or vice ver- sa)	Benefits > Risks/ Burdens (or vice versa)	Benefits > Risks/Burdens (or vice versa)
(Net benefit or harm moderate)	Net benefit (or net harm) is moderate	Net benefit (or net harm) is moderate	Net benefit (or net harm) appears moderate
	Applies to most patients in most circumstances and future research is unlikely to change confidence	Applies to most patients in most circumstances but better evidence could change confidence	Applies to most patients in most circumstances but better evidence is likely to change confidence
Conditional Recom- mendation	Benefits = Risks/ Burdens	Benefits = Risks/ Burdens	Balance between Benefits & Risks/Burdens unclear
(No apparent net ben- efit or harm)	Best action depends on individual patient circumstances	Best action appears to depend on individual patient circumstances	Alternative strategies may be equally reasonable
	Future research un- likely to change confi- dence	Better evidence could change confidence	Better evidence likely to change confidence
Clinical Principle	A statement about a component of clinical care that is widely agreed upon by urologists or other clinicians for which there may or may not be evidence in the medical literature		
Expert Opinion	A statement, achieved by consensus of the Panel, that is based on members clinical training, experience, knowledge, and judgment for which there is no evidence		

AUA and SUFU as well as external content experts. Additionally, a call for reviewers was placed on the AUA website from January 14-28, 2019 to allow any additional interested parties to request a copy of the document for review. The quideline was also sent to the Urology Care Foundation to open the document further to the patient perspective. The draft guideline document was distributed to 49 external peer reviewers. All peer review comments were blinded and sent to the Panel for review. In total, 33 reviewers (9 AUA PGC, SQC, and BOD reviewers; 22 external reviewers; and 2 public reviewers) provided At the end of the peer review comments. process, a total of 476 comments were received. Following comment discussion, the Panel revised the draft as needed. Once finalized, the guideline was submitted for approval to the AUA PGC, SQC and BOD as well as the governing bodies of SUFU for final approval.

Guideline Statements

PRE-TREATMENT

1. Clinicians should inform patients undergoing radical prostatectomy of all known factors that could affect continence. (Moderate Recommendation; Evidence Level: Grade B)

Many patient and surgical based factors have been evaluated to determine their impact on recovery of continence after RP. Younger patient smaller prostate size, and age, membranous urethral length (measured by MRI) have been consistently associated with improved recovery of continence after RP. A meta-analysis of studies evaluating age as a risk factor of IPT found that increasing patient age at the time of RP increases risk of incontinence.³⁻⁸ increasing prostate size results in increased odds of IPT, 4-6, 9-17 while increasing membranous urethral length results in decreased risk. 4-6, 9, 12, 18-²⁰ Although each of the above are risk factors, their relationship to IPT is complex and nonlinear. Predictive models should account for nonlinearity and are best represented nomograms.9

Surgical approaches do not seem to impact rates of IPT; in particular, open RP has similar rates of urinary incontinence as robot-assisted RP.21, 22 There is no current evidence that any surgical maneuvers, beyond bilateral neurovascular bundle preservation, results in improved continence recovery. 23, 24,25, 26 Men receiving bilateral neurovascular bundle preservation were 26% more likely to be continent at six months compared to men who did not; 27-32 however, surgeons should base the degree of nerve sparing on the features of the cancer rather than preoperative potency. Men with poor pre-operative potency still benefit from nerve sparing in terms of recovery of continence. 33, 34

BMI may impact IPT in the short-term; however there is little evidence that it is a risk factor for incontinence after RP at one year. 4-6, 9, 11-17

2. Clinicians should counsel patients regarding the risk of sexual arousal incontinence and climacturia following radical prostatectomy. (Strong Recommendation; Evidence Level: Grade B)

Urologists should inform patients of the risks of sexual arousal incontinence and climacturia. Sexual arousal incontinence is characterized by the inadvertent loss of urine during sexual arousal, foreplay, and/or masturbation. Climacturia (also known as orgasm-associated urinary incontinence) is the involuntary loss of urine at the time of orgasm. This can occur following RP, with or without adjuvant RT, and can even occur in those treated with RT alone. While precise prevalence has not been wellestablished, several studies report an incidence of sexual arousal incontinence and climacturia following prostate cancer surgery ranging from 20 -93%, with most reporting an overall rate close to 30%.35

Such leakage is reported as bothersome by up to half of those patients, and one-third report that they avoid sexual situations due to fear of leakage.³⁶

The pathophysiology of climacturia is not completely understood. The mechanism is thought

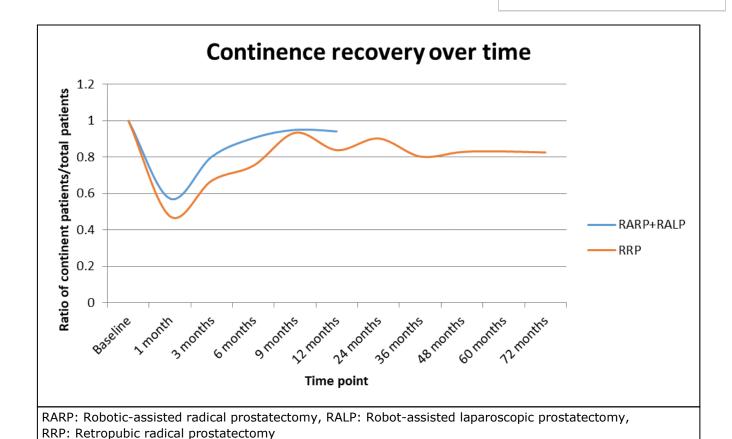
to relate to removal of the internal sphincter during RP, which is exacerbated by prior transurethral resection of the prostate (TURP). Bladder contraction at the time of orgasms with some degree of external sphincter insufficiency is thought to result in leakage during orgasm.³⁷

Although climacturia and SUI are not mutually exclusive, there is some overlap between the conditions. In patients with climacturia, 30% do not experience SUI; conversely, 30% of patients with SUI do not report climacturia.38 While the risk factors for climacturia are not as well defined as those for SUI, the main risk factor is time since surgery (shorter time from surgery is associated with a higher rate of leakage). Additionally, there appears to be a faster recovery of continence during sexual activity following robotic RP compared to open or pure laparoscopic RP.³⁹ Improvement can be expected throughout the postoperative period, but it can take several years to resolve, and typically persists in one-third of patients.35,40

Other risk factors include prior TURP, as well as shorter functional urethral and penile length following RP. It does not appear that age, preoperative erectile function, or nerve sparing status significantly affect the risk of sexual arousal or orgasm-related incontinence.³⁸

3. Clinicians should inform patients undergoing radical prostatectomy that incontinence is expected in the short-term and generally improves to near baseline by 12 months after surgery but may persist and require treatment. (Strong Recommendation; Evidence Level: Grade A)

A commonly accepted definition of urinary continence is not requiring a pad or protective device to stay dry (pad-free). Most men undergoing RP are not continent (pad-free) at the time of catheter removal and should be informed that continence is not immediate. Continence after RP improves with time, and most men achieve continence within 12 months of surgery. Men considering RP should be provided with reasonable expectations regarding recovery of


continence. Because incontinence is expected in the early phase after surgery, conservative management with regular follow-up during the first year after surgery is recommended to assess patient progress. The spectrum of improvement over time based on procedure is shown in Figure 1.

4. Prior to radical prostatectomy, patients may be offered pelvic floor muscle exercises or pelvic floor muscle training. (Conditional Recommendation; Evidence Level: Grade C)

Voluntarily activating the pelvic floor muscles through an exercise program prior to RP is a common practice. Exercises for the pelvic floor muscle are easier to learn in the pre-operative period since mastery can be difficult postoperatively given muscle inhibition, sensory changes, urinary incontinence, and surgical pain.⁴² Typical preliminary goals of a preoperative program include proper patient education regarding pelvic floor muscle anatomy, physiology, awareness, and motor control, which maximize the effectiveness of exercises.

Pelvic floor muscle exercises (PFME) is defined in this guideline as an exercise program specific to the pelvic floor muscle group that is self-guided as a home exercise program only. The patient may have learned the program through patient education literature or with a single basic instruction session from an appropriate practitioner. Pelvic floor muscle training (PFMT) is defined as a training program specific to the pelvic floor muscle group that is practitioner consist guided. Typically, **PMFT** will individualized pelvic floor muscle awareness training using verbal, tactile, and/or visual feedback along with a home based PFME program to be progressed during follow-up visits with the practitioner.

Seven trials met inclusion criteria regarding the effectiveness of a pre-operative PFMT program improving post-prostatectomy continence. The robustness of the recommendation is limited by heterogeneous methods of evaluation and comparison among the different studies. The PFMT methods utilized to optimize pelvic floor

muscle awareness included verbal cues, 43-45 tactile cues, 43, 45, 46 visualization of penile movement, 5 surface electromyography biofeedback, 44, 46, 47 pressure biofeedback, 48 and transabdominal ultrasound imaging. 43 Overall, these methods successfully assisted patients in isolating and contracting their pelvic floor muscles. However, it is not clear whether they are truly necessary or which methods are more beneficial.

To allow for neuromuscular adaptation, preoperative PFMT should be started three to four weeks prior to surgery. However, the Panel can neither recommend the optimal time frame for initiation of pre-operative PFMT, nor the ideal intensity of the program due to reported variability in start times found in the literature. The methods, dosage, and level of follow-up for PFMT and PFME in the post-operative period also varied among trials.

The benefit of starting pre-operative PMFT in not consistent in the outcome data. In one view, pre-operative PFMT has been shown to be effective in

hastening continence recovery after surgery, 43, 45, 48, 49 while other efforts have failed to demonstrate a beneficial effect on continence. 44, 46 All trials varied with respect to assigned PFMT/ PFME regimens, definitions of continence, and length of follow-up. It is important to note that formal PFMT is not harmful, and the potential benefits clearly outweigh any potential risks and likely decrease regret. 46

5. Patients undergoing transurethral resection of the prostate after radiation therapy or radical prostatectomy after radiation therapy should be informed of the high rate of urinary incontinence following these procedures. (Moderate Recommendation; Evidence Level: Grade C)

TURP. TURP following brachytherapy or external beam radiation has been associated with incontinence rates of up to 70%. ^{50, 51} The urethral fibrosis developing from radiation-related progressive endarteritis decreases the functional capabilities of the external sphincter. Even in the

absence of direct damage to the sphincter, adjacent surgical cautery or laser energy further compromises sphincter function. The need for subsequent resections, patient age, and pre-TURP urgency is correlated with higher rates of incontinence.⁵²

There is little to no published evidence discussing post-TURP outcomes with patients who have undergone other forms of local therapy such as high-intensity focused ultrasound and cryotherapy. However, it is the opinion of this Panel that these patients have high risks of incontinence similar to post-TURP radiated patients.

Salvage Prostatectomy. Regardless of the initial form of non-operative therapy or the operative approach, salvage RP is associated with high rates of urinary incontinence rates (ranging from 20-70%) for both open and robotic techniques compared to standard RP. 53-59

Patients undergoing TURP or salvage RP after primary non-surgical treatment for prostate cancer who seek long-term continence should be informed that they may require an artificial urinary sphincter (AUS).

POST-PROSTATE TREATMENT

6. In patients who have undergone radical prostatectomy, clinicians should offer pelvic floor muscle exercises or pelvic floor muscle training in the immediate post-operative period. (Moderate Recommendation; Evidence Level: Grade B)

Short-term PFMT may be offered to patients who are not able to perform self-directed PFME with appropriate quality and who request additional interventions to hasten the recovery of continence after RP. PFME after catheter removal has been shown to improve time-to-achieving continence compared to control groups in RCTs⁶⁰ and should be offered to all patients after RP upon removal of the urethral catheter. Those patients who are committed to a progressive PFMT or PFME program can expect an earlier return to continence than those who are not.⁴⁷ The timeframe for this early continence recovery after

RP can be as early as three^{47, 49, 61-63} to six months.⁶⁴ However, longer term assessment suggests that overall continence rates at one year remain similar between men who underwent PFME or PFMT and those who did not.⁶⁵

Long-term assessment is skewed because of highly heterogeneous data and continence rates between men treated with PFME/PFMT are similar to those not treated (57% with urinary incontinence in intervention group versus 62% in control group, RR=0.85 at 12 months, 95% CI=0.60-1.22).⁶⁵ Overall these data suggest that if performed in the early post-operative period, PFME or PFMT improve time to continence (thus improving QoL) but not overall continence at 12 months.

7. In patients with bothersome stress urinary incontinence after prostate treatment, surgery may be considered as early as six months if incontinence is not improving despite conservative therapy. (Conditional Recommendation; Evidence Level: Grade C)

While almost all patients have reached their maximum improvement by 12 months, most patients with severe SUI will show no significant improvement after six months and may be candidates for early intervention. A review of the data indicates that 90% of patients will achieve continence at six months after robotic-assisted laparoscopic prostatectomy and only an additional 4% of patients will gain continence afterwards.^{8, 66} Such data highlight that symptom improvement often plateaus earlier than one year. Patients who report a lack of symptom improvement or those experiencing more severe incontinence at six months may be offered early treatment in the form of surgical interventions with such a treatment decision made using a shared decision-making model.

8. In patients with bothersome stress urinary incontinence after prostate treatment, despite conservative therapy, surgical treatment should be offered at one year post-prostate treatment. (Strong Recommendation; Evidence Level: Grade: B)

Timing of treatment should be optimized to restore QoL as soon as possible without overtreatment. The natural history of incontinence after prostate surgery shows that the clear majority of patients will reach their maximum improvement by 12 months with minimal to no improvement afterwards. While cumulative data8, 66-71 has shown that 94% of patients achieve continence by 12 months, 69, 72 patients followed for 24 months after robotic-assisted laparoscopic prostatectomy revealed that only an additional 1% of patients had continued improvement from 12-24 months. Withholding surgical treatment after 12 months is unlikely to result in improved patient symptoms and will delay restoration of continence. Patients who are eager to become dry and whose symptom improvement has reached a plateau may desire surgical treatment earlier than one year, and shared decision-making is key in initiating this intervention. Conversely, treatment should be offered with caution in patients who are displaying symptom improvement.

EVALUATION OF INCONTINENCE AFTER PROSTATE TREATMENT

9. Clinicians should evaluate patients with incontinence after prostate treatment with history, physical exam, and appropriate diagnostic modalities to categorize type and severity of incontinence and degree of bother. (Clinical Principle)

There is no formal evidence regarding the effects of history and physical exam on outcomes of IPT treatments; however, there is universal agreement that taking a history and performing a physical examination should be the first step in assessment of anyone with urinary incontinence.⁷³ There is strong evidence that a history of pelvic RT^{74, 75} is associated with the severity of incontinence, especially incontinence, 76, 77 after prostate surgery.

The Panel believes that before treating IPT, it is critical to categorize the type of incontinence (stress, urgency, mixed) and the severity and degree of bother of incontinence. The status of prostate cancer also should be known, particularly for men who are candidates for salvage RT, which

may impact efficacy of continence treatment.

History is the first step in determining the type of incontinence, which is important because treatments for SUI (caused by sphincteric insufficiency) and urgency incontinence (caused by bladder dysfunction) are very different. In cases of mixed incontinence, it can be important to determine which component is more prevalent and bothersome, though many investigators feel that treatment outcomes for urgency incontinence may be difficult to determine in the face of significant sphincteric insufficiency.

History should focus on characterization of incontinence (stress or activity related versus urgency related), the severity of incontinence, the progression or resolution of incontinence over time, and degree of bother. Specifically, patients should be questioned on which activities causes incontinence. Increases in abdominal pressure such as that caused by straining, walking, cough, and exercise are suggestive of SUI, while the sudden compelling desire to void that is difficult to defer and results in leakage indicates urgency incontinence.⁷⁸ Presence of incontinence while asleep as well as nocturia are also important to note, because this may indicate urgency urinary incontinence or severe SUI. Confirmation of SUI can often be determined by history or physical exam alone; however there are times when a clinician may choose advanced testing such as urodynamic studies (UDS).

The severity of incontinence (i.e. volume lost over time) is important to know, especially in the case of sphincteric insufficiency as some treatments (e.g., male slings), clearly have inferior results in severe incontinence. Incontinence severity can be determined by history, or more objectively, by pad testing. It has been shown that careful questioning regarding pad number, size, and degree of wetness correlates well with pad weights and effect on QoL. 79 However, there may be times when a formal one-hour or 24-hour pad test may be helpful in determining incontinence severity.^{79, 80} The Panel agrees that it is important to determine the degree of bother of incontinence and effect on QoL since this will

help to determine the type of initial treatment, or no treatment, and guide counselling through a shared decision-making model.

10. Patients with urgency urinary incontinence or urgency predominant mixed urinary incontinence should be offered treatment options per the American Urological Association Overactive Bladder guideline. (Clinical Principle)

The occurrence of urinary frequency, urgency, and urgency urinary incontinence is common after prostate treatment.81-84 A review of urinary symptoms after RP reveals that 29% of patients will develop one or more symptoms, with 19% developing urinary urgency and 6% complaining of urgency incontinence.81 Clinicians should be aware of the prevalence of overactive bladder (OAB), which has been described as high as 48% ⁸⁵ and specifically assess for symptoms after prostate treatment. Evaluation and treatment can be initiated at any time post-prostate treatment and should follow the Overactive Bladder in Adults: AUA/SUFU Guideline. 86, 87 The presence of urgency urinary incontinence should not exclude a patient from surgical treatment of his bothersome SUI.

11. Prior to surgical intervention for stress urinary incontinence, stress urinary incontinence should be confirmed by history, physical exam, or ancillary testing. (Clinical Principle)

Prior to surgical intervention for SUI, clinicians should be certain that a patient truly has sphincteric insufficiency as a cause for his incontinence. History of SUI has a 95% positive predictive and 100% negative predictive value for the presence of SUI on UDS. Evidence has not definitely shown whether or not the objective demonstration of SUI predicts surgical outcomes after prostate cancer treatment. The AUA/SUFU Guideline on the Surgical Management of Female Stress Urinary Incontinence states that the objective demonstration of SUI should be confirmed prior to surgical management (based on panel consensus). Similarly, a recent International Continence Society consensus panel

on AUS recommended that every effort should be made to objectively confirm the presence of SUI prior to AUS placement. 90 Clinicians should take all reasonable measures to demonstrate SUI on physical exam with or without provocative testing such as bending, shifting position, or rising from seated to standing position. Stress pad testing can also be performed. Finally, if there is any doubt as to whether the patient has SUI, UDS may be performed. Examples of this may be when the patient has significant mixed incontinence and stress incontinence is not demonstrated, in cases where impaired compliance is suspected and incontinence could be related to high storage pressures without urgency, or if overflow incontinence is suspected. In the case of the latter, a post-void residual (PVR) may be helpful to rule out significant retention of urine.

The presence of microscopic hematuria may warrant additional evaluation with upper tract imaging and cystoscopy. The assessment of PVR may alert the physician to the potential for incomplete bladder emptying; however, reliability of a single elevated PVR value for predicting emptying dysfunction remains in question, just as a single low PVR value does not rule out the presence of incomplete emptying. Second, the threshold value of a significant PVR is similarly undefined. Finally, а persistently elevated PVR does not characterize the cause of impaired emptying, but rather indicates the need for further evaluation. Additionally, an elevated PVR in the presence of SUI may impact patient counseling regarding surgical interventions and patient expectations. Elevated PVR may be an indication of detrusor underactivity or obstruction stricture (e.g., urethral or bladder neck contracture [BNC]) and thus may prompt further diagnostic evaluation such as uroflowmetry, cystoscopy, or multichannel UDS.

12. Patients with incontinence after prostate treatment should be informed of management options for their incontinence, including surgical and non-surgical options. (Clinical Principle)

Incontinence after Prostate Treatment

Prior to engaging in any active or invasive form of therapy, patients must be made aware of the conservative options for management of urinary incontinence, such as absorbent pads, penile compression devices (clamps), and catheters. These alternatives may be utilized while engaging in PFME/PFMT, considering future options, waiting an appropriate time before surgical intervention, or as an indefinite form of management. Those patients who are candidates for surgical intervention in the future require assistance in handling ongoing leakage in a comfortable, reliable, and cost-efficient manner. 91

In IPT management, the conservative approach is first-line to control urinary leakage post catheter removal. Absorbent pads, which are available in an array of forms and sizes, are the primary tool of urinary containment. Penile compression devices can be used independently and as an adjunct to reduce daily absorbent product usage. Catheters (condom and urethral), may be necessary in patients with high volume pad usage suffering from skin excoriation, dermatitis, and cellulitis due to urinary leakage.

Absorbent Products – Liners, Guards, Briefs, Underwear. Most patients will start with absorbent pads and make adjustments in type based on the severity of leakage. In general, milder incontinence is managed satisfactorily with shields or lower density guards, while severe incontinence requires briefs or underwear with or without inserts to prevent accidents. From a cost perspective, briefs and underwear systems have been demonstrated to be more effective than pads. Thus, the patient should be advised along these lines if they wish to continue wearing pads as their primary mechanism for urinary containment.

In the individual patient, absorbent products alone may constitute a long-term management strategy. However, it has been demonstrated that the use of even one pad per day is a source of bother and decreased patient satisfaction. Additionally, the use of pads may be associated with skin irritation and dermatitis, especially in the intertriginous areas. In those who need to use

more than several pads or garments per day, financial considerations may influence the ability to change pads in a timely fashion. Therefore, it is important to ensure that the patient is utilizing the most effective product based on their degree of incontinence.

Occlusive Devices (Clamps). Occlusive devices may function as a stand-alone therapy for incontinence or as an adjunct to absorbent products. Combination therapy between the two types of devices, such as pads and clamps together, decreases the number of pads required during active periods with a resultant decrease in incontinence products expenditure. Patients must be instructed to release the clamp every two hours to allow for circulation regardless of the need to void. The clamp should not be left on the phallus overnight due to the risks of constant pressure. While successful in decreasing urine loss, compressive devices are associated with decreased penile Doppler flow.94 Mechanical compression devices are not suitable for patients with memory deficits, poor manual dexterity, impaired sensation, or a significant component of OAB.

Catheters (Condom, Urethral, and Suprapubic). Patients with severe or total incontinence may resort to a catheter and drainage system as the best method to obtain complete control of urinary incontinence. This form of management is also advantageous when the number or frequency of absorbent product changes is disruptive and/or financially prohibitive. Condom type catheters or urinary sheaths are an effective method of urinary containment for men with severe incontinence. In comparison to compressive devices, condom catheter systems are acceptable for patients with any degree of urge incontinence. Theoretically, this approach would also be superior to urethral stricture, poor manual dexterity, or a large glans/ narrow phallus configuration. 95 In the appropriate external catheters patient. have demonstrated to be superior to absorbent products in patient satisfaction. However, the success of a condom catheter is wholly dependent on proper sizing. The condom or sheath varies based on the material (latex or silicone), length of

Incontinence after Prostate Treatment

adhesive surface, circumference, and overall length. 96 Urethral catheter drainage is a decision of last resort in a patient who is unsuitable for alternative management. Suprapubic catheter drainage is not a solution for the patient with severe intrinsic sphincter deficiency, as urethral leakage will persist.

13. In patients with incontinence after prostate treatment, physicians should discuss risk, benefits, and expectations of different treatments using the shared decision-making model. (Clinical Principle)

The treatment of IPT can be a complex process involving numerous risks and benefits for the patient. Given these inherent complexities, providers should engage patients in shared decision-making during evaluation, treatment, and follow-up. Shared decision-making is a process in which providers and patients work together to make decisions about tests, interventions, and care plans.⁹⁷ Shared decisions are made based on clinical evidence that takes into account the risks and benefits and is teamed patient preferences and values. with approach is predicated on two principles: 1) Patients provide accurate information and can and will participate in the medical decision-making process by asking questions and expressing opinions about their treatment options. 2) Providers will honor patient preferences for goals use them to treatment and recommendations. Evidence suggests that patient participation improves patient satisfaction. Shared decision-making produces better health outcomes by decreasing anxiety, promoting faster recovery, and improving compliance. 98-101

14. Prior to surgical intervention for stress urinary incontinence, cystourethroscopy should be performed to assess for urethral and bladder pathology that may affect outcomes of surgery. (Expert Opinion)

The presence of urethral pathology (e.g., stricture, BNC, urethral lesions) may affect the outcome of surgery for SUI; therefore some assessment to rule out significant urethral pathology is recommended. The gold standard for

this would be a visual assessment of the urethra, including the membranous urethra, prostatic urethra (if present), and bladder neck with cystourethroscopy. Cystourethroscopy has also been recommended prior to placement of transobturator slings to assess urethral function (patients should have visual voluntary contraction of the external sphincter), and luminal closure of the urethra should be demonstrated with bulbar compression and elevation (repositioning test). 102 However, success of the procedure has not been shown to be dependent on these findings in any controlled study. In addition to an evaluation of the urethra, sphincter and bladder neck, preoperative cystourethroscopy can assess the bladder for any pathology that could affect the perform surgery decision to for stress incontinence. There is, however, no evidence that undergo who pre-operative patients cystourethroscopy have better outcomes for AUS or sling compared to those who do not. With this in mind, the International Continence Society consensus panel of AUS in 2015 stated that preoperative cystourethroscopy should performed whenever feasible as unrecognized urethral and bladder neck pathology can significantly complicate placement. AUS Unrecognized significant pathology may result in aborting AUS placement in favor of a stagedapproach. Having this information preoperatively is beneficial to the patient and the surgeon to clarify expectation and maximize patient satisfaction.90

In cases where pre-operative cystourethroscopy is not performed, it may be done at the start of the AUS or sling implantation before any incision is made. In such cases, patients should be made aware of the potential consequences and the possibility of aborting an AUS or sling insertion if significant urethral or bladder pathology is discovered.

15. Clinicians may perform urodynamic testing in a patient prior to surgical intervention for stress urinary incontinence in cases where it may facilitate diagnosis or counseling. (Conditional Recommendation; Evidence Level: Grade C)

Incontinence after Prostate Treatment

UDS allows for a precise evaluation of lower urinary tract function with respect to storage and emptying. It can aid in determining if IPT is caused by sphincter dysfunction, bladder dysfunction, or a combination of both, and also assess bladder contractility and the presence of bladder outlet dysfunction. Thus, UDS can be helpful in situations where this information is not apparent from history, physical, or simple testing.

UDS are not required before surgical intervention for IPT unless the clinician is in doubt of the diagnosis or it is felt that patient counseling will be affected. Unlike for the surgical treatment of SUI in women, there are no controlled studies that assess the value of UDS versus no UDS in men with SUI prior to surgery. In women with uncomplicated SUI, studies show UDS added no value over simple office evaluation, 103 and there is no advantage to UDS-based treatment of abnormalities other than stress incontinence. 104 There are a number of retrospective cohort studies that have shown that the presence of UDS abnormalities of storage (e.g., detrusor impaired compliance, overactivity, small cystometric capacity) do not affect outcomes of AUS or sling surgery in men with SUI. 105-108 Similarly, detrusor overactivity found on UDS has not been shown to negatively impact sling outcomes in men with SUI after prostate treatment. 109 In addition, abdominal leak-point pressure has not been shown to affect outcomes of AUS. 106 Furthermore, abdominal leak-point pressure does not correlate well with the degree of urinary incontinence, as determined by the 24hour pad test. 110

Pre-operative UDS may have a role in patient counseling (e.g., which patients may need further treatment of OAB symptoms post implant); however, patient selection for this reason is not well characterized. Finally, if the clinician is unsure of how prevalent sphincteric versus bladder affecting incontinence, or if there is unexplained poor bladder emptying, then UDS may be helpful in providing that additional information.

It is also important that the catheter be removed

and stress testing repeated in men with suspected SUI who do not demonstrate stress incontinence with a catheter in place. It has been shown that up to 35% of men with post-prostatectomy SUI will not demonstrate SUI with a catheter in place. This may be due to some scarring at the site of the anastomosis. In such cases, even a small catheter can occlude the urethra and prevent stress leakage. Also, if obstruction is suspected based on UDS criteria, a uroflow should be repeated without the catheter in place due to the possible obstructive effects of the catheter.

The most concerning and potentially most finding poor bladder dangerous UDS is compliance. This finding, however, is rare in IPT, even in patients who have had RT.112 UDS likely has the highest yield for poor compliance in patients with severe radiation cystitis or those who have advanced neurogenic lower urinary tract dysfunction. Patients with significantly elevated storage pressures can be treated primarily (if no stress incontinence) with anticholinergics or onabotulinumtoxin A to lower such pressures. UDS then can be repeated to document adequate reservoir function. For patients with poor compliance and SUI, the observation that untreated poor bladder compliance did not worsen the AUS continence outcomes must be viewed with caution. It is well known that increasing outlet resistance could potentially expose the upper tracts to even higher intravesical pressures as compliance worsens. 113 Such patients can be treated with anticholinergies or onabotulinumtoxin A and storage pressure can be rechecked prior to treating SUI.

Alternatively, periodic upper tract imaging and/or UDS can be done post- SUI surgery (sling or AUS) to follow "at risk" patients. While the risk damage to the upper tracts in pediatric patients with myelomeningocele is well documented, 114 it is not known if poor bladder compliance and an uncorrected storage pressure are absolute contraindications to SUI surgery in IPT patients. However, the Panel believes that when such patients are identified, they should be carefully followed to avoid upper tract decompensation.

TREATMENT OPTIONS

16. In patients seeking treatment for incontinence after radical prostatectomy, pelvic floor muscle exercises or pelvic floor muscle training should be offered. (Moderate Recommendation; Evidence Level: Grade B)

IPT is caused by damage to the voluntary urethral sphincter. Both injury to striated muscle and nerve fibers of the rhabdo-sphincter can lead to IPT. PFMT is thought to support muscle strength and enhance blood flow to the sphincter to promote healing. ⁶⁴ PFMT is a safe treatment with minimal side-effects that is readily accepted by patients and provides them with an opportunity to participate in, and have some control over, their health outcomes. Relative downsides to PFMT include time and effort needed by the patient and health care team, and cost of repeated visits, depending on the intensity of the program. ^{115, 116}

There are numerous RCTs that suggest benefit of undertaking PFMT^{47, 49, 61, 115, 117-119} while other studies did not show benefits. Trials differ on the regimen of PFMT employed, with some including biofeedback or electrical stimulation, the amount of caregiver contact, 62, 64 and whether or not the therapy was before or after surgery. Trials lack a common urinary incontinence definition, making comparison more challenging.

Although PFMT and PFME may both be beneficial in restoring pelvic floor muscle function to assist with continence recovery, there is some evidence that PFMT may be preferred over self-directed PFME potentially due to the practitioner guided support and follow-up instruction offered with PFMT.^{62, 64, 118}

17. Artificial urinary sphincter should be considered for patients with bothersome stress urinary incontinence after prostate treatment. (Strong Recommendation; Evidence Level: Grade B)

Multiple studies have demonstrated that AUS produces long-term continence and high patient satisfaction in men with any level of bothersome SUI.^{30, 123-132} AUS should be discussed as a

treatment option when surgical treatments are being considered. Patients should be informed regarding inherent risks of AUS placement including persistent leakage, mechanical failure, erosion, and infection. 126, 127, 130

In one study of AUS outcomes with two-year follow-up, complete continence was achieved in 20%, 55% had leakage of a few drops daily, and 22% had leakage of less than a teaspoon. The patients were highly satisfied, with 92% reporting they would do the surgery again, and 96% willing to recommend the surgery to a friend. In another study with follow-up of 2-11 years, a significant pad reduction was seen after AUS placement (4.0 to 0.6 pads per day).

18. Prior to implantation of artificial urinary sphincter, clinicians should ensure that patients have adequate physical and cognitive abilities to operate the device. (Clinical Principle)

While AUS is the most predictable and reliable treatment for SUI after prostate treatment, it is important to remember that it is a mechanical device and that current versions of AUS require manual dexterity and cognitive ability in order for the patient to use it properly. Patients must demonstrate the cognitive ability to know when, where, and how to use the device. Furthermore, there should be some assurance that patients can physically pump a device that is in a normal position in the scrotum. There are no uniform ways to demonstrate such dexterity, but a simple demonstration of strength in the fingers and the ability to squeeze the pump between the index finger and thumb should minimal be requirements.

19. In the patient who selects artificial urinary sphincter, a single cuff perineal approach is preferred. (Moderate Recommendation; Evidence Level: Grade C)

The traditional placement of AUS has been a single cuff via perineal incision. The introduction of new techniques such as the transverse scrotal incision and tandem cuff placement have been evaluated to be inferior

in non-randomized studies and should not be the standard of care for the customary AUS patient. 92, 134-137

While AUS placement is feasible via a transverse scrotal incision, 92 comparative studies indicate inferior outcomes. A review of complication rates between perineal and scrotal incisions revealed an increase complication rate requiring short-term explantation in 9% versus 19% when comparing the perineal versus transverse scrotal incisions, respectively. 134 In a multi-center cohort study, the transverse scrotal approach demonstrated decreased completely dry rates, increased need revision surgery due to continued incontinence, and a decrease in number of socially pad/day).¹³⁵ patients (<u><</u>1 continent together, these studies indicate that transverse scrotal approach has a decrease in efficacy, likely due to a more distal cuff placement, along with an increase in complications and need for revision surgery.

In regard to placement of a tandem cuff compared to a single cuff placement, a review of the data indicates equivalent continence outcomes but with an increased risk of complications in the tandem cuff group. ^{136, 137} In a cohort of 124 tandem cuff and 57 single cuff patients, outcomes indicated equal pad weight and total number of daily pads between the two groups, but the tandem cuff group had a 17% risk of explant at 48 months compared to 4% for the single cuff group. ¹³⁶ In another cohort, overall dry rate and daily pad use between the two groups was similar, but the tandem cuff group had 12 additional surgeries related to complications versus seven in the single cuff group. ¹³⁷

These comparative studies continue to support the traditional surgical approach of a single cuff via perineal approach as the standard technique that should be used. Furthermore, it is important to note that meticulous sterile technique needs to employed during this approach, preoperative antibiotics should be always given to cover skin flora as per the AUA Antimicrobial Prophylaxis Best Practice Statement, ¹³⁸ and surgeons must be able to select the appropriate cuff based on

intraoperative measurements, fill the components of the AUS with fluid, connect the tubing to make a watertight system, and test the AUS. If an intraoperative urethral injury is identified during implantation of an AUS, the procedure should be abandoned and subsequent implantation should be delayed.

20. Male slings should be considered as treatment options for mild to moderate stress urinary incontinence after prostate treatment. (Moderate Recommendation; Evidence Level: Grade B)

The literature is replete with both prospective and retrospective cohort studies of male sling placement for IPT. However, insufficient follow-up, different definitions of incontinence prior to treatment, variable definitions of "cure" and "improvement" following treatment, and use of a plethora of validated and non-validated outcome measures limits the ability to accurately compare the various male sling options currently available to patients.

Nine prospective^{102, 139-147} and five retrospective cohort studies¹⁴⁸⁻¹⁵² met criteria for inclusion in analysis for this guideline in determining the cure rate for male sling surgery IPT. The 14 studies included 758 patients, 470 of whom were considered cured by the respective investigator. Definition of "cure" varied from zero pads or one pad daily used for protection to a negative one-hour pad weight test. Overall, 62% of patient achieved cure (range 34-91%); 95% CI=0.51-0.72.

Ten studies, eight of which were prospective, ^{139,} ^{140,} ^{142,} ^{144-147,} ^{153,} ¹⁵⁴ and two of which were retrospective, ^{148,151} met criteria for assessment of "improvement" after sling implantation. In general, improvement was defined as at least a 50% improvement in pad weight or pad use and does not include patients who were less incontinent but did not meet the 50% threshold. In the overall group, 518 patients were included, 176 of whom were improved. Overall, 34% of patients achieved at least 50% improvement in leakage, with a range of 4-100%; 95% CI=0.18-0.51. Two trials^{153,154} did not separate cured and

improved patients, categorizing all such patients as "improved." When these two studies were omitted, the improvement rate was 28%.

The cohort studies did not include patients with radiation, and some excluded those with severe incontinence, generally considered >500 g urine per day leakage, or >5 pads per day. For those studies that included patients with severe leakage, sling failure was generally highest in that sub-group. Complications are not consistently reported, but in general, complication rates are low, with urinary retention typically resolving within one week, and pelvic and perineal pain and paresthesia resolving within 12 weeks. Erosion of the male sling is exceedingly rare. 155 If this happens, however, removal of the sling is necessary. Prior male sling does not typically interfere with subsequent sling revision or placement of an artificial sphincter in the setting of an unsatisfactory continence outcome. 156

21. Male slings should not be routinely performed in patients with severe stress incontinence. (Moderate Recommendation; Evidence Level: Grade C)

Men suffering with severe SUI electing treatment should not have a male sling and should consider an AUS. Male slings have been shown to have poor efficacy in comparison to an AUS in this subset of patients. ^{157, 158} Clinicians might consider a sling in patients who have not undergone radiation, who have minimal incontinence at night, or who would be unable to use the AUS given poor hand function or cognitive abilities. If a sling procedure is done, it would be imperative to counsel the patient regarding appropriate expectations.

22. Adjustable balloon devices may be offered to patients with mild stress urinary incontinence after prostate treatment. (Moderate Recommendation; Evidence Level: Grade B)

In 2017, adjustable balloon devices became available in the United States for treatment of male intrinsic sphincter deficiency after prostatectomy or TURP. At the time of this

publication, clinical experience in the United States with this device remains limited.

Patients with mild incontinence and no history of prior RT tend to have better outcomes. 159 Premarket studies have shown a 60-81% "cure" rate defined as 0-1 pads/day after implantation of the adjustable balloon. 106, 159-163 The success of the device should weighed against be complication rate. Intraoperative complications and need for explant tend to be higher than other anti-incontinence procedures. Explantation of the device due to complications or failure of treatment was common across all series and ranged from 4-30% during the first two years. 106, 159-162, 164

In a group of men with severe incontinence (5 pads per day; n=50), implantation of the adjustable balloon led to a significant improvement 12 months after surgery (1.8 pads per day, p<0.0001). In a larger series from the same group, 80/101 (79.2%) patients were considered as dry, with a pad test of 0-1g (70 patients, 0g; 10 patients, 1g) at 2.2 years follow-up. Significant improvements in QoL were also reported.

While the adjustable balloon devices have been shown to improve incontinence, providers should be aware of an increased incidence of intraoperative complications and need for explanation within the first two years compared to the male sling and AUS. Given the limited clinical experience of implanters across the United States, providers should obtain specialty training prior to device implantation.

23. Surgical management of stress urinary incontinence after treatment of benign prostatic hyperplasia is the same as that for patients after radical prostatectomy. (Moderate Recommendation; Evidence Level: Grade C)

BPH is one of the main causes of lower urinary tract symptoms in men. Around 30% of men over age 65 are diagnosed with BPH. Transurethral removal of prostate tissue (e.g., TURP, laser TURP, holmium laser enucleation of the prostate) or open simple prostatectomies are offered to

Incontinence after Prostate Treatment

men in whom behavioral and drug therapy fail to relieve symptoms. The rate of persistent SUI in open patients undergoing laparoscopic endoscopic surgical management of BPH ranges between 0-8.4%. 165, 166 Evaluation of patients with SUI after surgical therapy for BPH should be similar to those who have undergone RP; however care must be taken to rule out a primary bladder pathology such as OAB. Management of SUI after surgical management of BPH should follow the algorithm as that of a patient who underwent RP for prostate cancer. Patients who fail conservative should offered measures be surgical management. However, it should be noted that literature on surgical outcomes in this patient population is limited. Most studies evaluating results of AUS or male sling either combine BPH patients with RP patients or exclude them. There are a few studies that have demonstrated that AUS or male sling are safe and efficacious. A Cochrane review only identified one RCT evaluating surgical management of SUI after BPH surgery. 165 This study compared the efficacy of AUS implantation versus injectable therapy. Men undergoing AUS placement were more likely to be dry with an odds ratio of 5.67. Another study in patients were undergoing 56 placement after TURP found that continence was significantly improved in 90% of patients with a satisfaction rate of 87%, 167 and 14 patients required surgical revisions of their AUS. A study looking at 18 men undergoing transobturator male sling after TURP¹⁶⁸ found that 47% of men were cured and 60% were cured or improved using a cure definition of 0-5 g in the 24-hour pad test. In another study evaluating the use of the quadripolar male sling, four of eight patients were continent and two were improved at one year follow-up. 169

24. In men with stress urinary incontinence after primary, adjuvant, or salvage radiotherapy who are seeking surgical management, artificial urinary sphincter is preferred over male slings or adjustable balloons. (Moderate Recommendation; Evidence Level: Grade C)

Over the last decade there has been an increase

in the use of multimodal therapy for prostate cancer including adjuvant RT.¹⁷⁰ Radiation causes obliteration small vessel and endarteritis, resulting in ischemic tissue changes such as fibrosis and necrosis that can ultimately affect continence and outcomes following AUS or sling placement. 171, 172 Patients with IPT following adjuvant or salvage RT should be offered the same conservative management as a patient with post-prostatectomy SUI. Patients conservative measures should be offered surgical management, preferably placement of AUS. Radiated patients undergoing AUS placement should be counseled on potentially compromised functional outcomes and an increased risk of complications. Overall 66% of radiated patients will demonstrate significant improvement in their continence after AUS placement. However, when compared to the non-radiated patients, continence in the radiated patient after AUS placement may be compromised. Previous studies evaluating AUS placement in radiated versus nonradiated patients have shown mixed results, with some demonstrating equivalent and some worse outcomes in the radiated group. 105, 124 173, 174 However, a more contemporary cohort study comparing continence outcomes in radiated versus non-radiated patients showed that 89% of non-radiated patients were continent compared to 56% in the radiated group. 128

Radiated patients may also be at increased risk of complications after AUS placement. Recent metaanalysis demonstrated AUS revision was higher in radiated compared to non-radiated patients with a random effects risk ratio of 1.56 and a risk difference of 16%. 175 The majority of the revisions in the radiated group were secondary to erosion, whereas in the non-radiated group was secondary to urethral atrophy. A recent study evaluated whether temporal improvements in RT technique had an impact on AUS outcomes. 176 Patients undergoing RT prior after 2007 had equivalent outcomes to those undergoing RT prior to 2006. As a result, the Panel recommends that patients with RT for prostate cancer, whether as monotherapy or in combination with surgery be counseled in an equivalent manner regarding the

Incontinence after Prostate Treatment

outcomes, risks, and complications associated with anti-incontinence surgery.

Male slings are not recommended for patients who have undergone adjuvant or salvage RT due to a lack of compelling evidence regarding their effectiveness in this subgroup. The literature suggests that slings are not as successful in patients who have undergone adjuvant or salvage RT compared to those patients who have not. Also, when reviewing the literature, it appears that there is a decline in efficacy over time, which will likely continue to worsen. 74, 75

Publications looking at RT patients have relatively low numbers and do not look at the efficacy in mild, moderate, or severely incontinent patients. Therefore, it is difficult to determine if male slings work in any level of severity of incontinence. There may be improved efficacy in patients with milder SUI; however there is minimal data in this group. As such, it is still generally recommended that male slings should not be considered even in this group of patients.

25. Patients with incontinence after prostate treatment should be counseled that efficacy is low and cure is rare with urethral bulking agents. (Strong Recommendation; Evidence Level: Grade B)

There are currently no FDA-approved available agents for the treatment of male incontinence, and while the use of bulking agents to treat SUI is considered off-label, they remain the most commonly used procedure. This is likely because urethral bulking agents are the least invasive technique available; however they are also the least effective surgical technique in the treatment of male SUI. The utilization of materials to improve urethral coaptation evolved from initial application in females for intrinsic sphincter deficiency. The utilization of materials to improve urethral coaptation evolved from initial application in females for intrinsic sphincter deficiency.

Injectable therapy is a consideration in patients who are unable to tolerate or refuse more invasive surgical therapy. In male patients, the best success rates have been described in patients with a high Valsalva leak point pressure, unscarred vesicourethral anastomosis, and no RT

history.^{15, 179, 180} Data on the efficacy of injectable agents, including collagen, carbon coated zirconium beads, and silicone implants, in male patients are generally limited by the number of reports, patient cohort size, and length of follow-up.

In the largest published study of the utilization of collagen for male SUI, improvement was reported in approximately 50% of patients with a mean duration of 6 months whereas complete continence was achieved in 17% with a mean duration of 9 months. Of note, 1.5% of patients reported an increase in incontinence following collagen injections. ¹⁸¹

Success with the injection of carbon coated beads in male patients is characterized by transient partial improvement and risk of retention. Efficacy of carbon beads has been studied in the treatment of mild to moderate IPT. In a study of eight patients who had SUI after RP, only three patients reported subjective transient improvement and five patients opted for a more invasive surgical option after injection of pyrolytic carbon microspheres. 182 One patient reported worsening of his incontinence and another had acute urinary retention requiring an indwelling catheter for four days.

Injectable polydimethylsiloxane is a large molecule with a mean diameter of 140 μ m that becomes encapsulated in fibrin and collagen, thereby minimizing the risk of migration. However, due to its size and associated viscosity, special equipment is required for particle delivery. Reported efficacy in post prostatectomy patients ranges widely from 10 – 80%. The associated complications rates are variable: urinary retention (6-18%), urinary frequency (0-72%), dysuria (0-100%), and rarely urinary tract infection (0-6%). Reported in the same variable in the same variable in the same variable in the same variable in the same variable.

26. Other potential treatments for incontinence after prostate treatment should be considered investigational, and patients should be counseled accordingly. (Expert Opinion)

Outside of PFMT, AUS and perineal sling, no other

IPT interventions have vigorous data to support sustained efficacy. There have been some promising results reported in small case series for interventions such as extracorporeal magnetic intervention¹⁸⁵ and penile vibratory stimulation.¹⁸⁶ More data in larger cohorts are needed to better understand these treatment's durability treating IPT; as such patients should be counseled accordingly regarding the lack of outcome data. Stem and regenerative cell injections also offer a potential new form of intervention for treating IPT. However, there are data currently supporting this intervention and patients should be counseled that this is considered investigational. Patients wishing to pursue this modality should be referred to clinical research trials where safety and outcomes are monitored.

COMPLICATIONS AFTER SURGERY

27. Patients should be counseled that the artificial urinary sphincter will likely lose effectiveness over time, and reoperations are common. (Strong Recommendation; Evidence Level: Grade B)

AUS is an implant used for the treatment of stress-predominant IPT. The current version consists of a hydraulic system composed of three separate parts: a urethral cuff of varying sizes, a pressure regulating balloon reservoir with three available pressure profiles, and a control pump. The device will fail if any of the three parts, the tubing, or connections suffer a micro-perforation with loss of fluid. The rate of device failure increases with time, with failure rates of approximately 24% at 5 years¹⁸⁷ and 50% at 10 years.¹³²

A malfunctioning AUS does not necessarily need to be replaced, but if the patient is healthy and requests a replacement, the AUS can be explanted and a new one replaced at the same operative setting. The durability and efficacy of a secondary re-implant in this setting is the same as that of a primary AUS.¹⁸⁷

Device infection and cuff erosion are also causes of reoperation and should be discussed in detail with the patient prior to implantation of the AUS. Device infection is quite uncommon, with rates in long-term series ranging from less than 1% up to 5%. 132, 188 It is a dramatic presentation with pain at the site of the AUS; fever; scrotal warmth or erythema; or skin changes and necessitates an urgent explantation of the device. An AUS should not be replaced in the setting of infection for at least three months to allow the infection to clear and inflammation to subside. Cuff erosion can be due to unrecognized urethral injury at the time of initial surgery or more likely due to subsequent instrumentation of the urethra including catheterization. Rate of erosion is difficult to obtain due to varying patient populations and techniques but typically range from 1% to 10% on long-term follow-up. 132, 188 A cuff erosion can present insidiously but generally presents with hematuria, dysuria, or difficulty emptying the bladder and is diagnosed with a cystoscopic demonstration of the AUS cuff within the urethra. 189, 190 Management of cuff erosion is via AUS explant with the urethral catheter left in place for a few weeks to allow the urethral defect to heal. Similar to an infection, the AUS should not be reimplanted until at least three months and preferably at a different location along the urethra. In this setting, a transcorporal approach may be used.

Finally, an AUS might need to be replaced over time due to persistent or recurrent incontinence generally due to urethral atrophy, improper cuff sizing, or partial fluid loss. As previously stated, secondary AUS placements generally have similar outcomes to primary AUS placements; 187, 188, 191 however, patient satisfaction is driven by the degree of continence after AUS and not by the number of reoperations. 130, 192

28. In patients with persistent or recurrent urinary incontinence after artificial urinary sphincter or sling, clinicians should again perform history, physical examination, and/or other investigations to determine the cause of incontinence. (Clinical Principle)

In the patient with persistent urinary incontinence after AUS placement, a history and physical examination is necessary. In the case of the patient inadvertently deactivating the device or

inadequately cycling the device, re-education must be performed to ensure that the device is being utilized properly. In the event that an acute fluid loss is suspected, the volume in the pressure regulating balloon can be assessed using computerized tomography or ultrasound. ¹⁹³ Cuff coaptation may be evaluated by cycling the device during cystoscopic visualization. Although rare, poor coaptation in the absence of fluid loss in the early post-operative phase is related to improper cuff sizing or incomplete engagement of the cuff tab. Either situation can only be addressed by operative revision.

Recurrent incontinence after years of normal function suggests either development of a new leak due to wear or urethral atrophy (with or without erosion). A leak can be confirmed by decreased volume in the pressure regulating balloon, which can be assessed by using ultrasound or computerized tomography. The mainstay for evaluation of atrophy and erosion is cystoscopy.

In a patient with a normally functioning AUS, as determined by physical examination and imaging, leakage due to elevated storage pressures or detrusor over-activity should be suspected. UDS may be performed to evaluate filling pressures, capacity, presence of uninhibited detrusor contractions, and effective voiding. As a technical point, the cuff needs to be temporarily deflated and deactivated to allow for safe and atraumatic urodynamic sensor placement. If there are concerns regarding cuff damage, cystoscopy must be performed immediately to evaluate. In all cases of detrusor dysfunction, the underlying abnormalities must be addressed rather than performing any adjustments to the AUS with the exception of deflating and deactivating in the patient experiencing retention.

29. In patients with persistent or recurrent stress urinary incontinence after sling, an artificial urinary sphincter is recommended. (Moderate Recommendation; Evidence Level: Grade C)

Failure of a male sling can be due to infection or erosion, or more likely, due to patient

dissatisfaction with continence recovery. Rates of infection or erosion after male slings are thought to be very low with almost no long-term series of outcomes reporting these events. However, if a male sling is thought to be infected or documented to be eroded on cystoscopy, the management is similar to management of an infected or eroded AUS. Specifically, in this setting as much of the sling should be explanted as soon as possible with a catheter left in place in the setting of an erosion.

In patients who are not satisfied with the results of a sling due to inadequate continence recovery, a subsequent AUS is the most efficacious option. While a secondary sling can be performed with cure rate of about 45% and satisfaction rates of 70% in highly experienced approximately centers, 147, 194, 195 most authors recommend an AUS in this setting. A retrospective cohort study of 61 men looked at continence outcomes between salvage AUS and secondary slings. 195 transobrurator Twenty-nine underwent a repeat sling and 32 underwent an AUS following sling. Repeat sling patients had a failure rate of 55% compared to 6% after AUS. Multiple authors have shown that AUS after sling^{196, 197} have similar outcomes to primary AUS, and the Panel recommends and AUS following sling failure.

30. In patients with persistent or recurrent stress urinary incontinence after artificial urinary sphincter, revision should be considered. (Strong Recommendation; Evidence Level: Grade B)

Patients with persistent or recurrent incontinence or those dissatisfied with their continence recovery after AUS placement should undergo evaluation. Inadequate recovery of continence after AUS placement can be due to a host of factors, including suboptimal cuff sizing at the time of original operation or inadequate pressure regulating balloon gradient.

The original operative report should be evaluated to note surgical approach, size of urethral cuff, and location of pressure regulating balloon. In patients with a possible distally located cuff, or

Incontinence after Prostate Treatment

those with a larger cuff, proximal relocation or downsizing of the cuff are both reasonable options and will likely lead to better continence.

Tandem cuff placement is the addition of a cuff to the original cuff and has also been shown to be effective as a salvage procedure for patients with persistent incontinence. Specific additional risks of tandem cuff placement should be discussed with the patient prior to proceeding. Such risks include injury to the urethra during dissection, which would lead to aborting the case and the higher risk of subsequent erosion.

Some authorities have advocated moving the pressure regulating balloon to a different location or replacing it with a higher-pressure balloon. 198, 199 Others have used a transcorporal approach to improve urethral coaptation in patients with small urethral caliber, especially in the setting of prior RT and/or erosion; 200 however there is limited evidence to support either of these approaches.

Any of the above maneuvers can be combined with replacement of an AUS at the time of device failure. It is important to note that, in general efficacy and durability after secondary AUS placement appear to be similar to those after primary AUS placement, except in the setting of erosion. 187, 188, 191

SPECIAL SITUATIONS

31. In a patient presenting with infection or erosion of an artificial urinary sphincter or sling, explantation should be performed and reimplantation should be delayed. (Clinical Principle)

Similar to other synthetic devices, explantation is indicated in cases of AUS or male sling device infection. Timing of removal is usually influenced by severity of the infection and acuity of the clinical situation as indicated by the associated signs and symptoms (e.g., purulent drainage, erythema, tenderness, fever, chills). In general, explantation should be performed as soon as possible. In the case of the AUS, the most conservative course of action is removal of all components, regardless of whether the infection and any associated reaction are limited to a single

component. Even in the absence of purulent fluid and erythema, a wash-out procedure combined with immediate device replacement has not been consistently proven to be reliable or effective. ²⁰¹ As discussed previously, an infected male sling should be removed as completely as feasible without damaging any adjacent structures.

Often times an infection is secondary to a preexisting erosion. For AUS isolated cuff infections are rare without an associated erosion. Like infection, erosion requires device explantation. The urethral defect will usually heal by leaving a urethral catheter in place for three weeks. Some authors, however, recommend a urethral repair in cases of larger urethral defects due to decreased rates of stricture.²⁰²

For patients seeking a replacement device (AUS or male sling) after infection and/or erosion, a waiting period of three to six months is recommended. In the AUS patient, it may be necessarv to proceed with transcorporal placement of the cuff. 203, 204 This approach would be recommended in the radiated patient with the prior erosion with thinned spongiosal tissue who has insufficient tissue to obtain a satisfactory fitting cuff. Xenograft tissue buttressed to supplement the urethra (theoretically decreasing risk of erosion) has been associated with significant complications and thus has not been advantageous. 205, 206

32. A urinary diversion can be considered in patients who are unable to obtain long-term quality of life after incontinence after prostate treatment and who are appropriately motivated and counseled. (Expert Opinion)

In patients who are unable to obtain a satisfactory QoL long-term with an AUS due to multiple device failures, intractable BNC, or severe detrusor instability, urinary diversion with or without cystectomy may be an option. If bladder preservation is feasible, conversion to a Mitrofanoff (e.g. Appendix, Monti), incontinent ileovesicostomy, or suprapubic tube with bladder neck closure may confer an improved QoL. In the event of the "hostile" bladder, cystectomy in

combination with either an ileal conduit or continent catheterizable pouch would best manage incontinence while protecting the upper tracts.

33. In a patient with bothersome climacturia, treatment may be offered. (Conditional Recommendation; Evidence Level: Grade C)

As with post-prostatectomy SUI, for those with sexual arousal incontinence or climacturia, conservative management should be the initial treatment. The complaint may resolve in two-thirds of patients over time. For those with persistent leakage, behavioral management includes emptying the bladder prior to sex, use of condoms to catch the urine, and PFME, which has demonstrated improvement in one small randomized trial.

Anecdotal success has been reported with the tricyclic antidepressant imipramine, but this medication is generally contraindicated in men over the age of 65 years due to the risk of somnolence, falling down, and changes in cognition.²⁰⁷

The use of a penile variable tension loop (a soft silicone tube placed around the penis and adjusted to provide pressure on the urethra to physically prevent leaking during sex) has been used with success, decreasing the degree of orgasm-associated leakage in those with mild, moderate, and even severe self-reported leakage. Decreasing distress has been reported in both patients and partners, from 14% to 2% and 61% to 11%, respectively.²⁰⁸

Surgical treatment has been reported as very successful, but all trials included patients who were operated on for other indications. For example, implantation of an inflatable penile prosthesis for erectile dysfunction (ED) with a small polypropylene mesh anchored to the medial aspects of the bilateral corporotomies was successful in most of patients, with 93% noting improvement in climacturia postoperatively.²⁰⁹ The mechanism of action is one where the mesh compresses the bulbar urethra as the inflatable

penile prosthesis cylinders expand with inflation. Similarly, both the AUS and the transobturator male sling, when implanted for daytime SUI, are associated with high rates of improvement in climacturia, similar to the rates of improvement in SUI. $^{153,\,210}$

34. Patients with stress urinary incontinence following urethral reconstructive surgery may be offered artificial urinary sphincter and should be counseled that complications rates are higher. (Conditional Recommendation; Evidence Level: Grade C)

Urethral strictures of the anterior urethra and urethral stenosis of the posterior urethra can arise after RP, RT, or treatment for IPT.²¹¹ Anterior urethral strictures may be synchronous with prostate-related conditions and persist after treatment, occur de novo after therapy for prostate-related conditions or arise after an AUS erosion. Posterior urethral stenosis typically arises after treatment for prostate-related conditions. Urethral reconstructive surgery is often used to treat narrowing in the urethra. Often IPT exists prior to urethroplasty or is caused by urethral reconstruction in rare cases. AUS is the preferred surgical treatment for IPT after urethral reconstruction. Depending on the technique employed (urethra transecting or not) the blood supply to the urethra may be diminished and potentially decrease the life span of an AUS.

Transcorporal placement of the AUS might be beneficial in some cases due to concerns about alterations in urethral blood supply. AUS can be successfully replaced after erosion-related urethral strictures and subsequent reconstruction. Given post-surgical changes related to most types of urethral reconstruction in the posterior and anterior urethra, male slings will not be effective.

35. In patients with incontinence after prostate treatment and erectile dysfunction, a concomitant or staged procedure may be offered. (Conditional Recommendation; Evidence Level: Grade C)

In patients with both IPT and post-prostatectomy

Incontinence after Prostate Treatment

ED, concomitant surgery to treat both conditions should be considered. Though initial investigations showed concern for infection during concomitant surgery, various studies have demonstrated that concomitant surgery is safe and may actually provide significant benefits. 213, 214 In a report of patients undergoing combined prosthesis and AUS surgical procedures, combined procedures had a significantly longer operative time;²¹⁵ however, the rate of device infection, erosion or malfunction was not increased in combined compared to staged procedures. Another study described similar continence, sexual function, and overall satisfaction in patients undergoing staged versus combined procedures.²¹⁶ Despite these positive results of concomitant surgery most recent study using the SPARCS (New York State Department of Health Statewide Planning and Research Cooperative) database found that men undergoing combination of penile prosthesis and AUS placement had a higher rate of reoperation compared to men undergoing penile prosthesis alone.²¹⁷ Even though combination surgery is feasible, men considering surgical management of both ED and SUI should be counseled of the possible increase risk of complications.

36. Patients with symptomatic vesicourethral anastomotic stenosis or bladder neck contracture should be treated prior to surgery for incontinence after prostate treatment. (Clinical Principle)

Patients who are diagnosed with a symptomatic vesicourethral anastomotic stenosis (VUAS) or BNC should have treatment of their obstruction prior to surgical correction of their incontinence. Following treatment of VUAS, an interval cystoscopy should be performed at least four to six weeks later to document improvement and stabilization, after which IPT treatment can be considered. Although a VUAS or BNC will not necessarily cause SUI, treatment of them may worsen SUI. This is important because a patient may be considered for a sling procedure if he had "mild" incontinence, but he would likely need an AUS if it worsens after treatment. It is also generally felt that patients with a VUAS or BNC

have decreased success rates when undergoing male slings; therefore an AUS would generally be considered a better option in this group.¹⁵⁷

Treatment of a VUAS or BNC after a sling or AUS could be difficult or might place the patient at a higher risk of complications such as worsening of urinary incontinence, erosion of the AUS cuff, or possible infection. Endoscopic treatment of VUAS/BNC after AUS has been described using a semirigid ureteroscope and holmium laser although this is still not the optimal approach.²¹⁸

FUTURE DIRECTIONS

In the future significant changes are expected in the management of IPT, including enhancements in diagnostics and treatment options that will continue to improve patient continence and decrease the incidence of IPT. Since most papers are single center experiences, the Panel expects and hopes to have increased multicenter research collaboration. Patient reported outcome measures, which are very important in the treatment of QoL surgery have also become more prevalent; as such the Panel expects these to also improve in use and quality, allowing clinicians to fully address patient concerns.

Newer treatments will encompass not only improvements in surgical products such as the AUS and male slings, but also will include continued research into muscle injections, stem cells, and newer treatments for urgency and urge incontinence.

Developments regarding surgical products will likely include improvements to the current AUS, possibly improving the patient's ability to use the pump. It may also include a more automated system controlled from an external device. With newer technologies the Panel hopes to see automatic adjustments in cuff pressures or fluid volumes that would allow increased pressures improving continence with any increase in abdominal pressure.

Male slings have continued to evolve from bone anchored slings to the current products on the

market. As clinicians learn more about etiology, continued development and improvements will increase efficacy of newer products.

Some advances in the treatment of male SUI are expected to parallel those for female SUI. Regenerative medicine will continue to shape future treatments attempting to restore normal function with either autologous muscle-derived cells or multipotent mesenchymal stem cells injected into the sphincter. These cell-based therapies will continue to improve and provide clinicians with increased success rates. Ethical and legal issues associated with these regenerative treatments still need to be clarified.

REFERENCES

- Methods Guide for Effectiveness and Comparative Effectiveness Reviews. 2014; No. 10(14)-EHC063-EF.
- 2. BA HCaS: The Delphi technique: making sense of consensus. Practical Assessment, Research & Evaluation 2007; 1.
- 3. Novara G, Ficarra V, D'Elia C et al:
 Evaluating urinary continence and
 preoperative predictors of urinary
 continence after robot assisted
 laparoscopic radical prostatectomy. J Urol
 2010; **184:** 1028.
- 4. Kadono Y, Ueno S, Kadomoto S et al: Use of preoperative factors including urodynamic evaluations and nerve-sparing status for predicting urinary continence recovery after robot-assisted radical prostatectomy: nerve-sparing technique contributes to the reduction of postprostatectomy incontinence. Neurourol Urodyn 2016; **35:** 1034.
- 5. Jeong SJ, Kim HJ, Kim JH et al: Urinary continence after radical prostatectomy: predictive factors of recovery after 1 year of surgery. Int J Urol 2012; **19:** 1091.
- 6. Han K-s and Kim C-S: Effect of pubovesical complex reconstruction during robotassisted laparoscopic prostatectomy on the recovery of urinary continence. J Laparoendosc Adv Surg Tech A 2015; **25**: 814.
- 7. Kowalczyk KJ, Huang AC, Hevelone ND et al: Effect of minimizing tension during robotic-assisted laparoscopic radical prostatectomy on urinary function recovery. World J Urol 2013; **31:** 515.
- 8. Sacco E, Prayer-Galetti T, Pinto F et al: Urinary incontinence after radical prostatectomy: incidence by definition, risk

- factors and temporal trend in a large series with a long-term follow-up. BJU Int 2006; **97:** 1234.
- Matsushita K, Kent MT, Vickers AJ et al: Preoperative predictive model of recovery of urinary continence after radical prostatectomy. BJU Int 2015; 116: 577.
- 10. Mandel P, Preisser F, Graefen M et al: High chance of late recovery of urinary and erectile function beyond 12 months after radical prostatectomy. Eur Urol 2017; **71**: 848.
- 11. Ficarra V, Crestani A, Rossanese M et al: Urethral-fixation technique improves early urinary continence recovery in patients who undergo retropubic radical prostatectomy. BJU Int 2017; **119:** 245.
- 12. Choi SK, Park S and Ahn H: Randomized clinical trial of a bladder neck plication stitch during robot-assisted radical prostatectomy. Asian J Androl 2015; **17**: 304.
- Jo JK, Hong SK, Byun SS et al: Urinary continence after robot-assisted laparoscopic radical prostatectomy: The impact of intravesical prostatic protrusion. Yonsei Med J 2016; 57: 1145.
 Abdollah F, Sun M, Suardi N et al:
- 14. Abdollah F, Sun M, Suardi N et al:
 Prediction of functional outcomes after
 nerve-sparing radical prostatectomy:
 results of conditional survival analyses. Eur
 Urol 2012; **62:** 42.
- 15. Lee SW, Kang JH, Sung HH et al:
 Treatment outcomes of transurethral
 macroplastique injection for
 postprostatectomy incontinence. Korean J
 Urol 2014; **55:** 182.
- 16. Palisaar JR, Roghmann F, Brock M et al: Predictors of short-term recovery of urinary continence after radical prostatectomy. World J Urol 2015; **33:** 771.
- 17. Tewari AK, Ali A, Metgud S et al:
 Functional outcomes following robotic
 prostatectomy using athermal, traction
 free risk-stratified grades of nerve sparing.
 World 1 Urol 2013: **31:** 471.
- World J Urol 2013; **31:** 471.

 Jeong SJ, Yeon JS, Lee JK et al:
 Development and validation of nomograms to predict the recovery of urinary continence after radical prostatectomy: comparisons between immediate, early, and late continence. World J Urol 2014; **32:** 437.
- 19. Tienza A, Hevia M, Benito A et al: MRI factors to predict urinary incontinence after retropubic/laparoscopic radical prostatectomy. Int Urol Nephrol 2015; **47:** 1343.

- 20. Tienza A, Robles JE, Hevia M et al:
 Prevalence analysis of urinary incontinence
 after radical prostatectomy and influential
 preoperative factors in a single institution.
 Aging Male 2017: 1.
- 21. Coughlin GD, Yaxley JW, Chambers SK et al: Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol 2018; **19:** 1051.
- 22. Ilic D, Evans SM, Allan CA et al:
 Laparoscopic and robotic-assisted versus open radical prostatectomy for the treatment of localised prostate cancer.
 Cochrane Database Syst Rev 2017; 9:
 CD009625.
- 23. Rocco B, Gregori A, Stener S et al:
 Posterior reconstruction of the
 rhabdosphincter allows a rapid recovery of
 continence after transperitoneal
 videolaparoscopic radical prostatectomy.
 Eur Urol 2007; **51:** 996.
- 24. Kim IY, Hwang EA, Mmeje C et al: Impact of posterior urethral plate repair on continence following robot-assisted laparoscopic radical prostatectomy. Yonsei Med J 2010; **51:** 427.
- Med J 2010; **51:** 427.
 25. Zhao Z, Zhu H, Yu H et al: Comparison of intrafascial and non-intrafascial radical prostatectomy for low risk localized prostate cancer. Sci Rep 2017; **7:** 17604.
- Eastham JA, Kattan MW, Rogers E et al: Risk factors for urinary incontinence after radical prostatectomy. J Urol 1996; 156: 1707.
- 27. Hatiboglu G, Teber D, Tichy D et al: Predictive factors for immediate continence after radical prostatectomy. World J Urol 2016; **34:** 113.
- 28. Ko YH, Coelho RF, Chauhan S et al: Factors affecting return of continence 3 months after robot-assisted radical prostatectomy: analysis from a large, prospective data by a single surgeon. J Urol 2012; **187:** 190.
- 29. Lee DI, Wedmid A, Mendoza P et al: Bladder neck plication stitch: A novel technique during robot-assisted radical prostatectomy to improve recovery of urinary continence. J Endourol 2011; 25: 1873.
- 30. Mottet N, Boyer C, Chartier-Kastler E et al: Artificial urinary sphincter AMS 800 for urinary incontinence after radical prostatectomy: the French experience. Urol Int 1998; **60 Suppl 2:** 25.
- 31. Sammon J, Kim TK, Trinh QD et al: Anastomosis during robot-assisted radical

- prostatectomy: Randomized controlled trial comparing barbed and standard monofilament suture. Urology 2011; **78:** 572.
- 32. Schlomm T, Heinzer H, Steuber T et al: Full functional-length urethral sphincter preservation during radical prostatectomy. Eur Urol 2011; **60:** 320.
- 33. Kaye DR, Hyndman ME, Segal RL et al: Urinary outcomes are significantly affected by nerve sparing quality during radical prostatectomy. Urology 2013; **82:** 1348.
- 34. Burkhard FC, Kessler TM, Fleischmann A et al: Nerve sparing open radical retropubic prostatectomy--does it have an impact on urinary continence? J Urol 2006; **176**: 189.
- 35. Clavell-Hernandez J, Martin C and Wang R: Orgasmic dysfunction following radical prostatectomy:Review of current literature. Sex Med Rev 2017.
- 36. Mendez MH, Sexton SJ and Lentz AC: Contemporary review of male and female climacturia and urinary leakage during sexual activities. Sex Med Rev 2018; **6:** 16.
- Choi JM, Nelson CJ, Stasi J et al: Orgasm associated incontinence (climacturia) following radical pelvic surgery: rates of occurrence and predictors. J Urol 2007; 177: 2223.
- 38. O'Neil BB, Presson A, Gannon J et al: Climacturia after definitive treatment of prostate cancer. J Urol 2014; **191:** 159.
- 39. Capogrosso P, Ventimiglia E, Serino A et al: Orgasmic Dysfunction After Robotassisted Versus Open Radical Prostatectomy. Eur Urol 2016; **70:** 223.
- 40. Mitchell SA, Jain RK, Laze J et al: Postprostatectomy incontinence during sexual activity: a single center prevalence study. J Urol 2011; **186:** 982.
- 41. Liss MA, Osann K, Canvasser N et al:
 Continence definition after radical
 prostatectomy using urinary quality of life:
 evaluation of patient reported validated
 questionnaires. J Urol 2010; **183:** 1464.
- 42. Manassero F, Traversi C, Ales V et al:
 Contribution of early intensive prolonged pelvic floor exercises on urinary continence recovery after bladder neck-sparing radical prostatectomy: results of a prospective controlled randomized trial. Neurourol Urodyn 2007; **26:** 985.
- 43. Patel MI, Yao J, Hirschhorn AD et al:
 Preoperative pelvic floor physiotherapy
 improves continence after radical
 retropubic prostatectomy. Int J Urol 2013;
 20: 986.

- 44. Bales GT, Gerber GS, Minor TX et al: Effect of preoperative biofeedback/pelvic floor training on continence in men undergoing radical prostatectomy. Urology 2000; **56**: 627.
- 45. Centemero A, Rigatti L, Giraudo D et al: Preoperative pelvic floor muscle exercise for early continence after radical prostatectomy: a randomised controlled study. Eur Urol 2010; **57:** 1039.
- 46. Geraerts I, Van Poppel H, Devoogdt N et al: Pelvic floor muscle training for erectile dysfunction and climacturia 1 year after nerve sparing radical prostatectomy: a randomized controlled trial. Int J Impot Res 2016; **28:** 9.
- Parekh AR, Feng MI, Kirages D et al: The role of pelvic floor exercises on post-prostatectomy incontinence. J Urol 2003;
 170: 130.
- 48. Burgio KL, Goode PS, Urban DA et al:
 Preoperative biofeedback assisted
 behavioral training to decrease postprostatectomy incontinence: a randomized,
 controlled trial. J Urol 2006; **175:** 196.
- 49. Tienforti D, Sacco E, Marangi F et al: Efficacy of an assisted low-intensity programme of perioperative pelvic floor muscle training in improving the recovery of continence after radical prostatectomy: a randomized controlled trial. BJU Int 2012; **110:** 1004.
- 50. Mock S, Leapman M, Stock RG et al: Risk of urinary incontinence following post-brachytherapy transurethral resection of the prostate and correlation with clinical and treatment parameters. J Urol 2013; 190: 1805.
- 51. Hu K and Wallner K: Urinary incontinence in patients who have a TURP/TUIP following prostate brachytherapy. Int J Radiat Oncol Biol Phys 1998; **40:** 783.
- Polland A, Vertosick EA, Sjoberg DD et al: Preoperative symptoms predict continence after post-radiation transurethral resection of prostate. Can J Urol 2017; 24: 8903.
- 53. Lerner SE, Blute ML and Zincke H: Critical evaluation of salvage surgery for radio-recurrent/resistant prostate cancer. J Urol 1995; **154:** 1103.
- 54. Stephenson AJ, Scardino PT, Bianco FJ, Jr. et al: Morbidity and functional outcomes of salvage radical prostatectomy for locally recurrent prostate cancer after radiation therapy. J Urol 2004; **172:** 2239.
- 55. Gotto GT, Yunis LH, Vora K et al: Impact of prior prostate radiation on complications after radical prostatectomy. J Urol 2010; **184:** 136.

- 56. Eandi JA, Link BA, Nelson RA et al: Robotic assisted laparoscopic salvage prostatectomy for radiation resistant prostate cancer. J Urol 2010; **183**: 133.
- 57. Kaffenberger SD, Keegan KA, Bansal NK et al: Salvage robotic assisted laparoscopic radical prostatectomy: a single institution, 5-year experience. J Urol 2013; **189:** 507.
- 58. Yuh B, Ruel N, Muldrew S et al: Complications and outcomes of salvage robot-assisted radical prostatectomy: a single-institution experience. BJU Int 2014; **113:** 769.
- 59. Bates AS, Samavedi S, Kumar A et al: Salvage robot assisted radical prostatectomy: a propensity matched study of perioperative, oncological and functional outcomes. Eur J Surg Oncol 2015; **41:** 1540.
- 60. Fernandez RA, Garcia-Hermoso A, Solera-Martinez M et al: Improvement of continence rate with pelvic floor muscle training post-prostatectomy: a meta-analysis of randomized controlled trials. Urol Int 2015; **94:** 125.
- 61. Mariotti G, Sciarra A, Gentilucci A et al: Early recovery of urinary continence after radical prostatectomy using early pelvic floor electrical stimulation and biofeedback associated treatment. J Urol 2009; **181**: 1788.
- 62. Marchiori D, Bertaccini A, Manferrari F et al: Pelvic floor rehabilitation for continence recovery after radical prostatectomy: role of a personal training re-educational program. Anticancer Res 2010; **30:** 553.
- 63. Van Kampen M, De Weerdt W, Van Poppel H et al: Effect of pelvic-floor re-education on duration and degree of incontinence after radical prostatectomy: a randomised controlled trial. Lancet 2000; **355:** 98.
- 64. Overgard M, Angelsen A, Lydersen S et al: Does physiotherapist-guided pelvic floor muscle training reduce urinary incontinence after radical prostatectomy? A randomised controlled trial. Eur Urol 2008; **54:** 438.
- 65. Anderson CA, Omar MI, Campbell SE et al: Conservative management for postprostatectomy urinary incontinence. Cochrane Database Syst Rev 2015; 1: Cd001843.
- 66. Baker H, Wellman S and Lavender V:
 Functional Quality-of-Life Outcomes
 Reported by Men Treated for Localized
 Prostate Cancer: A Systematic Literature
 Review. Oncol Nurs Forum 2016; **43:** 199.

- 67. Donovan JL, Hamdy FC, Lane JA et al: Patient-reported outcomes after monitoring, surgery, or radiotherapy for prostate cancer. N Engl J Med 2016; **375**: 1425.
- 68. Stanford JL, Feng Z, Hamilton AS et al: Urinary and sexual function after radical prostatectomy for clinically localized prostate cancer: the prostate cancer outcomes study. JAMA 2000; **283**: 354.
- 69. Seo HJ, Lee NR, Son SK et al: Comparison of robot-assisted radical prostatectomy and open radical prostatectomy outcomes: a systematic review and meta-analysis. Yonsei Med J 2016; **57:** 1165.
- 70. De Carlo F, Celestino F, Verri C et al:
 Retropubic, laparoscopic, and robotassisted radical prostatectomy: surgical,
 oncological, and functional outcomes: a
 systematic review. Urol Int 2014; 93:
 373.
- 71. Lardas M, Liew M, van den Bergh RC et al: Quality of life outcomes after primary treatment for clinically localised prostate cancer: a systematic review. Euro Urol 2017; **72:** 869.
- 72. Choo MS, Choi WS, Cho SY et al: Impact of prostate volume on oncological and functional outcomes after radical prostatectomy: robot-assisted laparoscopic versus open retropubic. Korean J Urol 2013; **54:** 15.
- 73. Lucas MG, Bosch RJ, Burkhard FC et al: [European Association of Urology guidelines on assessment and nonsurgical management of urinary incontinence]. Actas Urol Esp 2013; **37:** 199.
- 74. Habashy D, Losco G, Tse V et al: Mid-term outcomes of a male retro-urethral, transobturator synthetic sling for treatment of post-prostatectomy incontinence: impact of radiotherapy and storage dysfunction. Neurourol Urodyn 2017; **36:** 1147.
- 75. Zuckerman JM, Tisdale B and McCammon K: AdVance male sling in irradiated patients with stress urinary incontinence. Can J Urol 2011; **18:** 6013.
- 76. Fischer MC, Huckabay C and Nitti VW: The male perineal sling: assessment and prediction of outcome. J Urol 2007; **177:** 1414.
- 77. Castle EP, Andrews PE, Itano N et al: The male sling for post-prostatectomy incontinence: mean followup of 18 months. J Urol 2005; **173:** 1657.
- 78. Herschorn S, Bruschini H, Comiter C et al: Surgical treatment of stress incontinence in men. Neurourol Urodyn 2010; **29:** 179.

- 79. Nitti VW, Mourtzinos A and Brucker BM:
 Correlation of patient perception of pad
 use with objective degree of incontinence
 measured by pad test in men with postprostatectomy incontinence: the SUFU pad
 test study. J Urol 2014; **192:** 836.
- 80. Soto Gonzalez M, Da Cuna Carrera I, Lantaron Caeiro EM et al: Correlation between the 1-hour and 24-hour pad test in the assessment of male patients with post-prostatectomy urinary incontinence. Prog Urol 2018; **28:** 536.
- 81. Hosier GW, Tennankore KK, Himmelman JG et al: Overactive bladder and storage lower urinary tract symptoms following radical prostatectomy. Urology 2016; **94:** 193.
- 82. Thiruchelvam N, Cruz F, Kirby M et al: A review of detrusor overactivity and the overactive bladder after radical prostate cancer treatment. BJU Int 2015; **116**: 853.
- 83. Kielb SJ and Clemens JQ: Comprehensive urodynamics evaluation of 146 men with incontinence after radical prostatectomy. Urology 2005; **66:** 392.
- 84. Chung DE, Dillon B, Kurta J et al: Detrusor underactivity is prevalent after radical prostatectomy: aurodynamic study including risk factors. Can Urol Assoc J 2013; **7:** E33.
- 85. Gomha MA and Boone TB: Voiding patterns in patients with post-prostatectomy incontinence: urodynamic and demographic analysis. J Urol 2003; **169:** 1766.
- 86. Gormley EA, Lightner DJ, Burgio KL et al: Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/SUFU guideline. J Urol 2012; **188**: 2455.
- 87. Gormley EA, Lightner DJ, Faraday M et al: Diagnosis and treatment of overactive bladder (non-neurogenic) in adults: AUA/ SUFU guideline amendment. J Urol 2015; 193: 1572.
- 88. Ficazzola MA and Nitti VW: The etiology of post-radical prostatectomy incontinence and correlation of symptoms with urodynamic findings. J Urol 1998; **160**: 1317.
- 89. Kobashi KC, Albo ME, Dmochowski RR et al: Surgical treatment of female stress urinary incontinence: AUA/SUFU guideline. J Urol 2017; **198:** 875.
- 90. Biardeau X, Aharony S, Campeau L et al: Artificial urinary sphincter: report of the 2015 consensus conference. Neurourol Urodyn 2016; **35 Suppl 2:** S8.

- 91. Newman DK, Guzzo T, Lee D et al: An evidence-based strategy for the conservative management of the male patient with incontinence. Curr Opin Urol 2014; **24:** 553.
- 92. Wilson L, Brown JS, Shin GP et al: Annual direct cost of urinary incontinence. Obstet Gynecol 2001; **98:** 398.
- 93. Cooperberg MR, Master VA and Carroll PR: Health related quality of life significance of single pad urinary incontinence following radical prostatectomy. J Urol 2003; **170**: 512.
- 94. Moore KN, Schieman S, Ackerman T et al: Assessing comfort, safety, and patient satisfaction with three commonly used penile compression devices. Urology 2004; 63: 150.
- 95. Kyle G: The use of urinary sheaths in male incontinence. Br J Nurs 2011; **20:** 338.
- 96. Robinson J: Continence: sizing and fitting a penile sheath. Br J Community Nurs 2006; **11:** 420.
- 97. Barry MJ and Edgman-Levitan S: Shared decision making--pinnacle of patient-centered care. N Engl J Med 2012; **366:** 780.
- 98. Greenfield S, Kaplan S and Ware JE, Jr.: Expanding patient involvement in care. Effects on patient outcomes. Ann Intern Med 1985; **102:** 520.
- 99. Greenfield S, Kaplan SH, Ware JE, Jr. et al: Patients' participation in medical care: effects on blood sugar control and quality of life in diabetes. J Gen Intern Med 1988; **3:** 448.
- 100. Kaplan SH, Greenfield S and Ware JE, Jr.: Assessing the effects of physician-patient interactions on the outcomes of chronic disease. Med Care 1989; **27:** S110.
- 101. Guadagnoli E and Ward P: Patient participation in decision-making. Soc Sci Med 1998; **47:** 329.
- 102. Rehder P and Gozzi C: Transobturator sling suspension for male urinary incontinence including post-radical prostatectomy. Eur Urol 2007; **52:** 860.
- 103. Nager CW, Brubaker L, Litman HJ et al: A randomized trial of urodynamic testing before stress-incontinence surgery. N Engl J Med 2012; **366:** 1987.
- 104. Agarwal A, Rathi S, Patnaik P et al: Does preoperative urodynamic testing improve surgical outcomes in patients undergoing the transobturator tape procedure for stress urinary incontinence? A prospective randomized trial. Korean J Urol 2014; **55**: 821.

- 105. Perez LM and Webster GD: Successful outcome of artificial urinary sphincters in men with post-prostatectomy urinary incontinence despite adverse implantation features. J Urol 1992; **148**: 1166.
- 106. Trigo-Rocha F, Gomes CM and Pompeo ACL: Prospective study evaluating efficacy and safety of adjustable continence therapy (ProACT) for post radical prostatectomy urinary incontinence. Urology 2006; **67:** 965.
- 107. Lai HH, Hsu EI and Boone TB: Urodynamic testing in evaluation of postradical prostatectomy incontinence before artificial urinary sphincter implantation. Urology 2009; **73:** 1264.
- 108. Thiel DD, Young PR, Broderick GA et al: Do clinical or urodynamic parameters predict artificial urinary sphincter outcome in post-radical prostatectomy incontinence? Urology 2007; **69:** 315.
- 109. Ballert KN and Nitti VW: Association between detrusor overactivity and postoperative outcomes in patients undergoing male bone anchored perineal sling. J Urol 2010; **183:** 641.
- 110. Twiss C, Fleischmann N and Nitti VW: Correlation of abdominal leak point pressure with objective incontinence severity in men with post-radical prostatectomy stress incontinence. Neurourol Urodyn 2005; **24:** 207.
- 111. Huckabay C, Twiss C, Berger A et al: A urodynamics protocol to optimally assess men with post-prostatectomy incontinence. Neurourol Urodyn 2005; **24:** 622.
- 112. Hoffman D, Vijay V, Peng M et al: Effect of Radiation on Male Stress Urinary Incontinence and the Role of Urodynamic Assessment. Urology 2018.
- 113. Kaufman AM, Ritchey ML, Roberts AC et al: Decreased bladder compliance in patients with myelomeningocele treated with radiological observation. J Urol 1996; **156**: 2031.
- 114. Ghoniem GM, Bloom DA, McGuire EJ et al: Bladder compliance in meningomyelocele children. J Urol 1989; **141:** 1404.
- 115. Moore KN, Valiquette L, Chetner MP et al:
 Return to continence after radical
 retropubic prostatectomy: a randomized
 trial of verbal and written instructions
 versus therapist-directed pelvic floor
 muscle therapy. Urology 2008; 72: 1280.
- 116. Wille S, Sobottka A, Heidenreich A et al: Pelvic floor exercises, electrical stimulation and biofeedback after radical prostatectomy: results of a prospective randomized trial. J Urol 2003; **170:** 490.

- 117. Floratos DL, Sonke GS, Rapidou CA et al:
 Biofeedback vs verbal feedback as learning
 tools for pelvic muscle exercises in the
 early management of urinary incontinence
 after radical prostatectomy. BJU Int 2002;
 89: 714.
- 118. Ribeiro LHS, Prota C, Gomes CM et al:
 Long-term effect of early postoperative
 pelvic floor biofeedback on continence in
 men undergoing radical prostatectomy: a
 prospective, randomized, controlled trial. J
 Urol 2010; **184:** 1034.
- 119. Goode PS, Burgio KL, Johnson TM, 2nd et al: Behavioral therapy with or without biofeedback and pelvic floor electrical stimulation for persistent postprostatectomy incontinence: a randomized controlled trial. JAMA 2011; 305: 151.
- 120. Pannek J and Konig JE: Clinical usefulness of pelvic floor reeducation for men undergoing radical prostatectomy. Urol Int 2005; **74:** 38.
- 121. Cornel EB, de Wit R and Witjes JA:
 Evaluation of early pelvic floor
 physiotherapy on the duration and degree
 of urinary incontinence after radical
 retropubic prostatectomy in a non-teaching
 hospital. World J Urol 2005; 23: 353.
- 122. Filocamo MT, Li Marzi V, Del Popolo G et al: Effectiveness of early pelvic floor rehabilitation treatment for post-prostatectomy incontinence. Eur Urol 2005; **48:** 734.
- 123. Sacomani CAR, Zequi SdC, Costa WHd et al: Long-term results of the implantation of the AMS 800 artificial sphincter for post-prostatectomy incontinence: a single-center experience. Int Braz J Urol 2017; 43: 07.
- 124. Walsh IK, Williams SG, Mahendra V et al: Artificial urinary sphincter implantation in the irradiated patient: safety, efficacy and satisfaction. BJU Int 2002; **89:** 364.
- 125. Gomha MA and Boone TB: Artificial urinary sphincter for post-prostatectomy incontinence in men who had prior radiotherapy: a risk and outcome analysis. J Urol 2002; **167:** 591.
- 126. Litwiller SE, Kim KB, Fone PD et al: Postprostatectomy incontinence and the artificial urinary sphincter: a long-term study of patient satisfaction and criteria for success. J Urol 1996; **156**: 1975.
- 127. Trigo Rocha F, Gomes CM, Mitre AI et al: A prospective study evaluating the efficacy of the artificial sphincter AMS 800 for the treatment of postradical prostatectomy urinary incontinence and the correlation

- between preoperative urodynamic and surgical outcomes. Urology 2008; **71:** 85.
- 128. Guillaumier S, Solomon E, Jenks J et al:
 Radiotherapy is associated with reduced continence outcomes following implantation of the artificial urinary sphincter in men with post-radical prostatectomy incontinence. Urology Annals 2017; 9: 253.
- 129. Kuznetsov DD, Kim HL, Patel RV et al: Comparison of artificial urinary sphincter and collagen for the treatment of postprostatectomy incontinence. Urology 2000; **56:** 600.
- 130. Gousse AE, Madjar S, Lambert MM et al: Artificial urinary sphincter for post-radical prostatectomy urinary incontinence: longterm subjective results. J Urol 2001; 166: 1755.
- 131. Santos ACSDJ, Rodrigues LdO, Azevedo DC et al: Artificial urinary sphincter for urinary incontinence after radical prostatectomy: a historical cohort from 2004 to 2015. Int Braz J Urol 2017: **43:** 150.
- Braz J Urol 2017; **43:** 150.

 132. Lai HH, Hsu EI, Teh BS et al: 13 years of experience with artificial urinary sphincter implantation at Baylor College of Medicine. J Urol 2007; **177:** 1021.
- 133. Scott FB, Bradley WE and Timm GW: Treatment of urinary incontinence by an implantable prosthetic urinary sphincter. 1974. J Urol 2002; **167:** 1125.
- 134. Kretschmer A, Husch T, Thomsen F et al:
 Complications and short-term explantation
 rate following artificial urinary sphincter
 implantation: results from a large middle
 European multi-institutional case series.
 Urol Int 2016; **97:** 205.
- 135. Henry GD, Graham SM, Cornell RJ et al: A multicenter study on the perineal versus penoscrotal approach for implantation of an artificial urinary sphincter: cuff size and control of male stress urinary incontinence. J Urol 2009; **182:** 2404.
- 136. Ahyai SA, Ludwig TA, Dahlem R et al:
 Outcomes of single- vs double-cuff artificial
 urinary sphincter insertion in low- and high
 -risk profile male patients with severe
 stress urinary incontinence. BJU Int 2016;
 118: 625.
- 137. O'Connor RC, Lyon MB, Guralnick ML et al: Long-term follow-up of single versus double cuff artificial urinary sphincter insertion for the treatment of severe postprostatectomy stress urinary incontinence. Urology 2008; **71:** 90.

- 138. Wolf JS, Jr., Bennett CJ, Dmochowski RR et al: Best practice policy statement on urologic surgery antimicrobial prophylaxis. J Urol 2008; **179:** 1379.
- 139. Cornel EB: Re: Irina Soljanik, Armin J. Becker, Christian G. Stief, et al. Repeat retrourethral transobturator sling in the management of recurrent postprostatectomy stress urinary incontinence after failed first male sling. Eur Urol. 2010;58:767-72. Eur Urol 2011; **59:** e12; author reply e13.
- 140. Le Portz B, Haillot O, Brouziyne M et al: Surgimesh M-SLING((R)) transobturator and prepubic four-arm urethral sling for post-prostatectomy stress urinary incontinence: clinical prospective assessment at 24 months. BJU Int 2016; 117: 966.
- 141. Carmel M, Hage B, Hanna S et al: Longterm efficacy of the bone-anchored male sling for moderate and severe stress urinary incontinence. BJU Int 2010; **106**: 1012.
- 142. Xu YM, Zhang XR, Sa YL et al: Bulbourethral composite suspension for treatment of male-acquired urinary incontinence. Eur Urol 2007; **51:** 1709.
- 143. Ulrich D, Bjelic-Radisic V, Grabner K et al: Objective outcome and quality-of-life assessment in women with repeat incontinence surgery. Neurourol Urodyn 2017; **36:** 1543.
- 144. John H: Bulbourethral composite suspension:: a new operative technique for post-prostatectomy incontinence. J Urol 2004; **171:** 1866.
- 145. Wadie BS: A novel technique of bulbourethral sling for post-prostatectomy incontinence. Scand J Urol Nephrol 2007; 41: 398.
- 146. Rehder P, Haab F, Cornu JN et al:
 Treatment of postprostatectomy male
 urinary incontinence with the
 transobturator retroluminal repositioning
 sling suspension: 3-year follow-up. Eur
 Urol 2012; 62: 140.
- 147. Soljanik I, Becker AJ, Stief CG et al:
 Repeat retrourethral transobturator sling in
 the management of recurrent
 postprostatectomy stress urinary
 incontinence after failed first male sling.
 Eur Urol 2010; **58:** 767.
- 148. Zuckerman JM, Henderson K and McCammon K: Transobturator male sling: is there a learning curve? Can J Urol 2013; **20:** 6768.

- 149. Stern JA, Clemens JQ, Tiplitsky SI et al: Long-term results of the bulbourethral sling procedure. J Urol 2005; **173**: 1654.
- 150. Hubner WA, Gallistl H, Rutkowski M et al: Adjustable bulbourethral male sling: experience after 101 cases of moderate-tosevere male stress urinary incontinence. BJU Int 2011; **107:** 777.
- 151. Madjar S, Jacoby K, Giberti C et al: Bone anchored sling for the treatment of post-prostatectomy incontinence. J Urol 2001; **165:** 72.
- 152. Giberti C, Gallo F, Schenone M et al: The bone anchor suburethral synthetic sling for iatrogenic male incontinence: critical evaluation at a mean 3-year followup. J Urol 2009; **181:** 2204.
- 153. Jain R, Mitchell S, Laze J et al: The effect of surgical intervention for stress urinary incontinence (UI) on post-prostatectomy UI during sexual activity. BJU Int 2012; 109: 1208.
- 154. Sousa-Escandon A, Cabrera J, Mantovani F et al: Adjustable suburethral sling (male remeex system) in the treatment of male stress urinary incontinence: a multicentric European study. Eur Urol 2007; **52:** 1473.
- 155. Bauer RM, Mayer ME, May F et al:
 Complications of the AdVance
 transobturator male sling in the treatment
 of male stress urinary incontinence.
 Urology 2010; **75:** 1494.
- 156. Comiter C: Surgery for postprostatectomy incontinence: which procedure for which patient? Nat Rev Urol 2015; **12:** 91.
- 157. Cornu JN, Sebe P, Ciofu C et al: The AdVance transobturator male sling for postprostatectomy incontinence: clinical results of a prospective evaluation after a minimum follow-up of 6 months. Eur Urol 2009; **56:** 923.
- 158. Bauer RM, Soljanik I, Fullhase C et al: Midterm results for the retroluminar transobturator sling suspension for stress urinary incontinence after prostatectomy. BJU Int 2011; **108:** 94.
- 159. Roupret M, Misrai V, Gosseine PN et al:
 Management of stress urinary incontinence
 following prostate surgery with minimally
 invasive adjustable continence balloon
 implants: functional results from a single
 center prospective study. J Urol 2011;
 186: 198.
- 160. Lebret T, Cour F, Benchetrit J et al:
 Treatment of postprostatectomy stress
 urinary incontinence using a minimally
 invasive adjustable continence balloon
 device, ProACT: results of a preliminary,
 multicenter, pilot study. Urology 2008; 71:
 256.

- 161. Gilling PJ, Bell DF, Wilson LC et al: An adjustable continence therapy device for treating incontinence after prostatectomy: a minimum 2-year follow-up. BJU Int 2008; **102:** 1426.
- 162. Hubner WA and Schlarp OM: Adjustable continence therapy (ProACT): evolution of the surgical technique and comparison of the original 50 patients with the most recent 50 patients at a single centre. Eur Urol 2007; **52:** 680.
- 163. Kocjancic E, Crivellaro S, Ranzoni S et al: Adjustable continence therapy for the treatment of male stress urinary incontinence: a single-centre study. Scand J Urol Nephrol 2007; **41:** 324.
- 164. Kocjancic E, Crivellaro S, Ranzoni S et al: Adjustable continence therapy for severe intrinsic sphincter deficiency and recurrent female stress urinary incontinence: longterm experience. J Urol 2010; 184: 1017.
- 165. Silva LA, Andriolo RB, Atallah AN et al: Surgery for stress urinary incontinence due to presumed sphincter deficiency after prostate surgery. Cochrane Database Syst Rev 2014: Cd008306.
- 166. Gratzke C, Bachmann A, Descazeaud A et al: EAU Guidelines on the Assessment of Non-neurogenic Male Lower Urinary Tract Symptoms including Benign Prostatic Obstruction. Eur Urol 2015; **67:** 1099.
- 167. Gundian JC, Barrett DM and Parulkar BG:
 Mayo Clinic experience with the AS800
 artificial urinary sphincter for urinary
 incontinence after transurethral resection
 of prostate or open prostatectomy. Urology
 1993; 41: 318.
- 168. Kretschmer A, Buchner A, Leitl B et al:
 Long-term outcome of the retrourethral
 transobturator male sling after
 transurethral resection of the prostate. Int
 Neurourol J 2016; **20:** 335.
- 169. Hogewoning CRC, Meij LAM, Pelger RCM et al: Sling surgery for the treatment of urinary incontinence after transurethral resection of the prostate: new data on the virtue male sling and an evaluation of literature. Urology 2017; **100:** 187.
- 170. Bastian PJ, Boorjian SA, Bossi A et al: High -risk prostate cancer: from definition to contemporary management. Eur Urol 2012; **61:** 1096.
- 171. Hudak SJ and Morey AF: Impact of 3.5 cm artificial urinary sphincter cuff on primary and revision surgery for male stress urinary incontinence. J Urol 2011; **186**: 1962.
- 172. Manunta A, Guille F, Patard JJ et al: Artificial sphincter insertion after

- radiotherapy: is it worthwhile? BJU Int 2000; **85:** 490.
- 173. Ravier E, Fassi-Fehri H, Crouzet S et al: Complications after artificial urinary sphincter implantation in patients with or without prior radiotherapy. BJU Int 2015; **115**: 300.
- 174. Sathianathen NJ, McGuigan SM and Moon DA: Outcomes of artificial urinary sphincter implantation in the irradiated patient. BJU Int 2014; **113:** 636.
- 175. Bates AS, Martin RM and Terry TR:
 Complications following artificial urinary sphincter placement after radical prostatectomy and radiotherapy: a meta-analysis. BJU Int 2015; **116**: 623.
- 176. Hird AE and Radomski SB: Artificial urinary sphincter erosion after radical prostatectomy in patients treated with and without radiation. Can Urol Assoc J 2015; 9: E354.
- 177. Poon SA, Silberstein JL, Savage C et al: Surgical practice patterns for male urinary incontinence: analysis of case logs from certifying American urologists. J Urol 2012; **188:** 205.
- 178. Elsergany R, Elgamasy AN and Ghoniem GM: Transurethral collagen injection for female stress incontinence. Int Urogynecol J Pelvic Floor Dysfunct 1998; **9:** 13.
- 179. Cespedes RD, Leng WW and McGuire EJ: Collagen injection therapy for postprostatectomy incontinence. Urology 1999; **54:** 597.
- 180. Kim PH, Pinheiro LC, Atoria CL et al:
 Trends in the use of incontinence
 procedures after radical prostatectomy: a
 population based analysis. J Urol 2013;
 189: 602.
- 181. Westney OL, Bevan-Thomas R, Palmer JL et al: Transurethral collagen injections for male intrinsic sphincter deficiency: the University of Texas-Houston experience. J Urol 2005; **174:** 994.
- 182. Secin FP, Martinez-Salamanca JI and Eilber KS: [Limited efficacy of permanent injectable agents in the treatment of stress urinary incontinence after radical prostatectomy]. Arch Esp Urol 2005; **58:** 431.
- 183. Kylmala T, Tainio H, Raitanen M et al: Treatment of postoperative male urinary incontinence using transurethral macroplastique injections. J Endourol 2003; **17:** 113.
- 184. Imamoglu MA, Tuygun C, Bakirtas H et al: The comparison of artificial urinary sphincter implantation and endourethral macroplastique injection for the treatment

- of post prostatectomy incontinence. Eur Urol 2005; **47:** 209.
- 185. Yokoyama T, Nishiguchi J, Watanabe T et al: Comparative study of effects of extracorporeal magnetic innervation versus electrical stimulation for urinary incontinence after radical prostatectomy. Urology 2004; **63:** 264.
- 186. Fode M and Sonksen J: Penile vibratory stimulation in the treatment of post-prostatectomy incontinence: a randomized pilot study. Neurourol Urodyn 2015; **34:** 117.
- 187. Linder BJ, de Cogain M and Elliott DS: Long-term device outcomes of artificial urinary sphincter reimplantation following prior explantation for erosion or infection. J Urol 2014; **191:** 734.
- 188. Raj GV, Peterson AC, Toh KL et al:
 Outcomes following revisions and
 secondary implantation of the artificial
 urinary sphincter. J Urol 2005; **173:** 1242.
- 189. Kowalczyk JJ, Nelson R and Mulcahy JJ:
 Successful reinsertion of the artificial
 urinary sphincter after removal for erosion
 or infection. Urology 1996; 48: 906.
 190. Motley RC and Barrett DM: Artificial urinary
- 190. Motley RC and Barrett DM: Artificial urinary sphincter cuff erosion. Experience with reimplantation in 38 patients. Urology 1990; **35:** 215.
- 191. Lai HH and Boone TB: Complex artificial urinary sphincter revision and reimplantation cases--how do they fare compared to virgin cases? J Urol 2012; **187:** 951.
- 192. Viers BR, Linder BJ, Rivera ME et al: Longterm quality of life and functional outcomes among primary and secondary artificial urinary sphincter implantations in men with stress urinary incontinence. J Urol 2016; **196:** 838.
- 193. Brucker BM, Demirtas A, Fong E et al: Artificial urinary sphincter revision: the role of ultrasound. Urology 2013; **82**: 1424.
- 194. Bauer RM, Mayer ME, Gratzke C et al:
 Prospective evaluation of the functional
 sling suspension for male
 postprostatectomy stress urinary
 incontinence: results after 1 year. Euro
 Urol 2009; **56:** 928.
- 195. Ajay D, Zhang HJ, Gupta S et al: The artificial urinary sphincter is superior to a secondary transobturator male sling in cases of a primary sling failure. J Urol 2015; **194:** 1038.
- 196. Fisher MB, Aggarwal N, Vuruskan H et al: Efficacy of artificial urinary sphincter implantation after failed bone-anchored

- male sling for postprostatectomy incontinence. Urology 2007; **70:** 942.
- 197. Lentz AC, Peterson AC and Webster GD:
 Outcomes following artificial sphincter
 implantation after prior unsuccessful male
 sling. J Urol 2012; **187:** 2149.
- 198. Singla N, Siegel JA, Simhan J et al: Does pressure regulating balloon location make a difference in functional outcomes of artificial urinary sphincter? J Urol 2015; 194: 202.
- 199. Maximilien B, Aublea A, Gillibert A et al:
 Urethral pressure controlled balloon
 refilling or balloon change for artificial
 sphincter secondary procedure? Prog Urol
 2018; **28:** 209.
- 200. Mock S, Dmochowski RR, Brown ET et al: The impact of urethral risk factors on transcorporeal artificial urinary sphincter erosion rates and device survival. J Urol 2015; 194: 1692.
- 201. Bryan DE, Mulcahy JJ and Simmons GR: Salvage procedure for infected noneroded artificial urinary sphincters. J Urol 2002; **168:** 2464.
- 202. Rozanski AT, Tausch TJ, Ramirez D et al: Immediate urethral repair during explantation prevents stricture formation after artificial urinary sphincter cuff erosion. J Urol 2014; **192**: 442.
- 203. Guralnick ML, Miller E, Toh KL et al:
 Transcorporal artificial urinary sphincter
 cuff placement in cases requiring revision
 for erosion and urethral atrophy. J Urol
 2002; **167:** 2075.
- 204. Aaronson DS, Elliott SP and McAninch JW: Transcorporal artificial urinary sphincter placement for incontinence in high-risk patients after treatment of prostate cancer. Urology 2008; **72:** 825.
- 205. Trost L and Elliott D: Small intestinal submucosa urethral wrap at the time of artificial urinary sphincter placement as a salvage treatment option for patients with persistent/recurrent incontinence following multiple prior sphincter failures and erosions. Urology 2012; **79:** 933.
- 206. Margreiter M, Farr A, Sharma V et al: Urethral buttressing in patients undergoing artificial urinary sphincter surgery. J Urol 2013; **189:** 1777.
- 207. Salonia A, Burnett AL, Graefen M et al: Prevention and management of postprostatectomy sexual dysfunctions part 2: recovery and preservation of erectile function, sexual desire, and orgasmic function. Eur Urol 2012; **62:** 273.

- 208. Mehta A, Deveci S and Mulhall JP: Efficacy of a penile variable tension loop for improving climacturia after radical prostatectomy. BJU Int 2013; **111:** 500.
- 209. Yafi FA, Andrianne R, Brady J et al:
 "Andrianne mini-jupette" graft at the time
 of inflatable penile prosthesis placement
 for the management of post-prostatectomy
 climacturia and minimal urinary
 incontinence. J Sex Med 2018; **15:** S146.
- 210. Christine B BA: Climacturia: an underaddressed sequela of radical prostatectomy, but treatment is only a sling away. J Urol 2016; **195**: e636.
- 211. Hampson LA, McAninch JW and Breyer BN: Male urethral strictures and their management. Nat Rev Urol 2014; **11:** 43.
- 212. Keihani S, Chandrapal JC, Peterson AC et al: Outcomes of urethroplasty to treat urethral strictures arising from artificial urinary sphincter erosions and rates of subsequent device replacement. Urology 2017; **107:** 239.
- 213. Kumar R and Nehra A: Dual implantation of penile and sphincter implants in the post -prostatectomy patient. Curr Urol Rep 2007; **8:** 477.
- 214. Zafirakis H, Wang R and Westney OL: Combination therapy for male erectile dysfunction and urinary incontinence. Asian J Androl 2008; **10:** 149.
- 215. Segal RL, Cabrini MR, Harris ED et al:
 Combined inflatable penile prosthesisartificial urinary sphincter implantation: no
 increased risk of adverse events compared
 to single or staged device implantation. J
 Urol 2013; 190: 2183.
- 216. Mancini JG, Kizer WS, Jones LA et al:
 Patient satisfaction after dual implantation
 of inflatable penile and artificial urinary
 sphincter prostheses. Urology 2008; **71:**893.
- 217. Patel N, Golan R, Halpern JA et al: A contemporary analysis of dual inflatable penile prosthesis and artificial urinary sphincter outcomes. J Urol 2019; 201: 141.
- 218. Weissbart SJ, Chughtai B, Elterman D et al: Management of anastomotic stricture after artificial urinary sphincter placement in patients who underwent salvage prostatectomy. Urology 2013; 82: 476.

ABBREVIATIONS

AUA American Urological Association
AUAER American Urological Association
Education and Research, Inc.
AUS Artificial urinary sphincter

BMI Body mass index

BNC Bladder neck contracture

BOD Board of directors

BPH Benign prostatic hyperplasia

ED Erectile dysfunction

FDA Food and Drug Administration IPT Incontinence after prostate

treatment

MRI]Magnetic resonance imaging

OAB Overactive bladder

PFME Pelvic floor muscle exercise
PFMT Pelvic floor muscle training
PGC Practice guidelines committee

PVR Post-void residual QoL Quality of life

RCT Randomized controlled trial RP Radical prostatectomy RT Radiation treatment

SQC Science and Quality Council
SUFU Society of Urodynamics, Female
Pelvic Medicine & Urogenital

Reconstruction

SUI Stress urinary incontinence TURP Transurethral resection of the

prostate

UDS Urodynamic testing

VUAS Vesicourethral anastomotic stenosis

INCONTINENCE AFTER PROSTATE TREATMENT PANEL, CONSULTANTS, AND STAFF

Panel

Jaspreet S. Sandhu, MD (Chair) Memorial Sloan Kettering Cancer Center

Kurt McCammon, MD (Vice Chair) Eastern Virginia Medical School

Benjamin Breyer, MD University of California San Francisco

Craig Comiter, MD Stanford University

James A. Eastham, MD Memorial Sloan Kettering Cancer Center

Christopher Gomez, MD University of Miami

Daniel Kirages, PT, DPT University of Southern California

Chris Kittle (Patient Advocate)

Alvaro Lucioni, MD Virginia Mason

Victor Nitti, MD

University of California, Los Angeles

John T. Stoffel, MD University of Michigan

O. Lenaine Westney, MD MD Anderson Cancer Center

Consultants M. Hassan Murad

Mayo Clinic

Staff

Abid Khan, MHS, MPP Erin Kirkby, MS Nenellia K. Bronson, MA Leila Rahimi, MHS Brooke Bixler, MH Shalini Selvarajah, MD, MPH

CONFLICT OF INTEREST DISCLOSURES

All panel members completed COI disclosures. Disclosures listed include both topic- and non-topic-related relationships.

Consultant/Advisor: Craig Comiter, Avails Medical, Neuspera, Better Health; **Kurt McCammon,** Boston Scientific.

Employee: O. Lenaine Westney, Boston Scientific; **Kurt McCammon,** Urology of Virginia.

Health Publishing: Benjamin Breyer, World Journal Urology, Sexual Medicine Open Access.

Investment Interest: James Eastham, 3D-Biopsy; **Victor Nitti,** Serenity Pharmaceuticals.

Leadership Position: Kurt McCammon, IVUMed, **John Stoffel**, Journal of Urology.

Scientific Study or Trial: Craig Comiter, Zenflow, BE Technologies, Kurt MCCammon, Allergen, Astellas, Solace, Taris, Cook; Victor Nitti, Astellas, Allergen, Medtronic, Amphora; John T. Stoffel, Uroplasty, Department of Defense

PEER REVIEWERS

We are grateful to the persons listed below who contributed to the Guideline by providing comments during the peer review process. Their reviews do not necessarily imply endorsement of the Guideline.

AUA (Board of Directors, Science and Quality Council, Practice Guidelines Committee, Journal of Urology)

Rodney Breau Pat Fulgham David Ginsberg Anne Gormley Melissa Kaufman Louis Kavoussi John Mulhall Roger E. Schultz Anthony Smith

External Reviewers (Non-AUA Affiliates)

William Brant Stuart Boyd Anne Cameron Roger Dmochowski Bradley Gill Howard Goldman Alexander Gomelsky Sender Herschorn Michael Kennelly Laura Leddy Gary Lemack Mark Litwin Joshua Meeks Allen Morey Robert O'Connor Drew Peterson Phillip Pierorazio Keith Rourke Eric Rovner Beth Shelley Ajay Singla

Public Commenters (via public notice on AUA website)

Jordan Dimitrakoff Kirill Shiranov

Jack Zuckerman

DISCLAIMER

This document was written by the Incontinence After Prostate Treatment Guideline Panel of the American Urological Association Education and Research, Inc., which was created in 2017. The PGC of the AUA selected the committee chair. Panel members were selected by the chair. Membership of the Panel included specialists in

urology with specific expertise on this disorder. The mission of the Panel was to develop recommendations that are analysis-based or consensus-based, depending on Panel processes and available data, for optimal clinical practices in the treatment of stress urinary incontinence.

Funding of the Panel was provided by the AUA and SUFU. Panel members received no remuneration for their work. Each member of the Panel provides an ongoing conflict of interest disclosure to the AUA.

While these guidelines do not necessarily establish the standard of care, AUA seeks to recommend and to encourage compliance by practitioners with current best practices related to the condition being treated. As medical knowledge expands and technology advances, the guidelines will change. Today these evidence-based guidelines statements represent not absolute mandates but provisional proposals for treatment under the specific conditions described in each document. For all these reasons, the guidelines do not preempt physician judgment in individual cases.

Treating physicians must take into account variations in resources, and patient tolerances, needs, and preferences. Conformance with any clinical guideline does not guarantee a successful outcome. The guideline text may include information or recommendations about certain drug uses ('off label') that are not approved by the Food and Drug Administration (FDA), or about medications or substances not subject to the FDA approval process. AUA urges strict compliance with all government regulations and protocols for prescription and use of these substances. The physician is encouraged to carefully follow all available prescribing information indications, contraindications, precautions and warnings. These guidelines and best practice statements are not in-tended to provide legal advice about use and misuse of these substances.

Although guidelines are intended to encourage best practices and potentially encompass available technologies with sufficient data as of close of the literature review, they are necessarily time-limited. Guidelines cannot include evaluation of all data on emerging technologies or management, including those that are FDA-approved, which may immediately come to represent accepted clinical practices.

For this reason, the AUA does not regard technologies or management which are too new to be addressed by this guideline as necessarily experimental or investigational.